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Abstract

Nowadays multibeam echo sounders are the most common and efficient method to perform hy-

drographic surveys. Processing hydrographic data (bathymetry and backscatter) requires a set of

procedures to obtain reliable information. Several commercial and scientific software solutions are

already available for this purpose, but accessibility is limited. This will be addressed by the use

of open source libraries. The combination of Jupyter Notebook and Python has great potential for

interactive data processing. A workflow for bathymetry and backscatter processing was developed

based on Kongsberg EM122 data and evaluated for its applicability in this thesis. With focus on the

XYZ and seabed image datagrams, the underlying data was first analyzed. Next, a Python module

for generating attributed point clouds was developed and, based on this, an interactive notebook

for filtering and correcting the data was built with the open source tools PDAL, Entwine and Potree.

Validation was performed with reference data processed on board with commercial software, and

independent data from a Kongsberg EM 710 multibeam. Generally, the applicability of the approach

could be confirmed with the chosen implementation. Marginal differences have been found in pre-

processing. Overall, Jupyter Notebook has proven to be effective, but processing steps must be

clearly defined for specific applications and cannot be scaled up arbitrarily.

Zusammenfassung

Heutzutage sind Fächerecholote die gängigste und effizienteste Methode zur Durchführung hydro-

graphischer Vermessungen. Die Verarbeitung hydrographischer Daten (Bathymetrie und Rückstreu-

ung) erfordert eine Reihe von Prozessen, um zuverlässige Informationen zu erhalten. Mehrere kom-

merzielle und wissenschaftliche Softwarelösungen sind für diesen Zweck bereits verfügbar, aber die

Nutzung ist nicht immer zugänglich. Dem soll durch den Einsatz von Open-Source-Bibliotheken

begegnet werden. Die Kombination von Jupyter Notebook und Python hat großes Potenzial für

die interaktive Datenverarbeitung. In dieser Arbeit wurde ein Workflow für die Verarbeitung von

Bathymetrie- und Rückstreudaten auf Basis von Kongsberg EM122-Daten entwickelt und auf seine

Anwendbarkeit hin getested. Mit Fokus auf die XYZ- und seabed image-Datagramme wurden

zunächst die zugrundeliegenden Daten analysiert. Anschließend wurde ein Python-Modul zur

Generierung attributierter Punktwolken entwickelt und darauf aufbauend ein interaktives Notebook

zur Filterung und Korrektur der Daten mit den Open-Source-Tools PDAL, Entwine und Potree erstellt.

Die Validierung erfolgte mit Referenzdaten, die mit kommerzieller Software an Bord verarbeitet wur-

den, sowie mit unabhängigen Daten von einem Kongsberg EM 710 Fächerlot. Generell konnte die

Anwendbarkeit des Ansatzes mit der gewählten Implementierung bestätigt werden. Marginale Un-

terschiede wurden bei der Vorprozessierung gefunden. Insgesamt hat sich Jupyter Notebook als

effektiv erwiesen, allerdings müssen die Verarbeitungsschritte für spezifische Anwendungen klar

definiert sein und können nicht beliebig hoch skaliert werden.
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Introduction

1. Introduction

Nowadays, multibeam echo sounders (MBES) are the most common and efficient method to conduct

hydrographic surveys. Thereby MBES systems have the intrinsic capability to not only measure

the geometry of the seafloor (bathymetry) but also its reflective properties (backscatter) which to

some extent provide information about the characteristics of the seafloor. Due to the challenging

conditions of the marine environment and the complex setup, inherent to MBES measurements,

both, bathymetry as well as backscatter data, require various processing steps in order to provide

reliable results.

Software suites that address the needs of MBES data are already available. In general, they can

be divided into two large groups: commercial software and software originating from the work of

scientific institutes. Software suites of the former usually offer very comprehensive solutions with

the flexibility to adapt the differing demands. However, the licenses are most often very expensive.

On the other hand, the available scientific software ranges from very specific implementations, to

toolboxes as extensive as the commercial software. Often these toolboxes are modular and have

a command-line or script-based user interface rather than a graphical one. Although they often

have free licenses, they usually lack accessibility in terms of platform requirements and the level of

knowledge expected from the user.

Python stands out among the variety of programming languages available due to its accessibility

in terms of its simplicity, but also its fast implementation cycle and the wide variety of specialized

libraries and open source packages offered by the scientific community. The Jupyter project was

a fork of IPython (Interactive Python), specifically to support data science and scientific computing,

with the stated aim of promoting the development of open source software and services for interac-

tive computing. These efforts have resulted in, among other things, the Jupyter Notebook, a web

application that allows code, as well as other rich, interactive output, to be shared, providing a unique

way of integrating code and documentation.

Students in particular struggle with the disadvantages of the available software, as they usually

cannot afford the commercial licenses, nor do they have the skills to use the scientific software. The

combination of Jupyter Notebook and Python has great potential to bridge this gap. First, Jupyter

Notebook per se provides a graphical user interface that allows the combination of executable code

and explanatory documentation. Python is one of the programming languages that is said to be easy

to learn. Therefore, in combination with the documentation, it has a high potential to provide easy

accessibility while using tools and algorithms offered by the large Python community. The goal of

this thesis is to explore the capabilities of MBES bathymetry and backscatter data processing using

Jupyter Notebook and Python. The focus will be primarily on Kongsberg EM122 data collected

during RV Sonne cruise SO268-3 to assess its general suitability.

1



Background

2. Background

A multibeam echo sounder (MBES) is a type of active sonar1 that is used to efficiently map the

seafloor. As all active sonars, MBES systems emit short acoustic pulses called pings towards a

target, usually the seafloor, and listen for the returning echoes. The ping of a MBES consists of

multiple acoustic beams arranged in a fan-shape called swath. With one ping, a MBES swath can

simultaneously measure up to a few hundred soundings covering a narrow strip of seafloor in athwart

ship direction with a width of up to several times the water depth. Nowadays, MBES systems are

widespread in all kind of applications ranging from nautical charting over research to industrial appli-

cations. They are meanwhile deployable from various support platforms such as ships, unmanned

underwater or surface vehicles, or towed containers (towfish).

While MBES systems first appeared in the 1970s (Lurton, 2002), the need for reliable hydrographic

information is much older. First traces of primitive depth measurements date back to 3,700 years

old Egyptian tomb paintings showing depth measurements with poles, spades and ropes for the

location of potential navigational hazards nearshore (Grządziel and Wąż, 2018). Such and similar

techniques were used over centuries, eventually evolving in complexity to mechanical sounders.

First practical devices utilizing the good propagation properties of sound in water were passive

sonar systems used by Allies during World War I (Lurton, 2002). Although the idea of sonar systems

actively transmitting acoustic energy was not new then, it was not until the Titanic disaster in 1912

which finally triggered the development of active sonar systems. One of the first patents came

1913 from the German physicist Alexander Behm who was initially searching for a method to detect

icebergs but eventually found that the seafloor was an excellent acoustic reflector (Grządziel and

Wąż, 2018). First hydroacoustic surveys were carried out in the 1920s using single-beam echo

sounders (SBESs). In the following years, the development of sonar technology was mainly driven

by the upcoming World War II and further enhanced by improvements in computer performance. In

the 1970s first commercial deep water MBES models appeared increasing the efficiency of seafloor

acoustic mapping drastically by multiplying the number of simultaneous soundings. These days,

a variety of MBES systems exist, covering a wide range of applications. Generally, they may be

distinguished into two groups: Swath and sweep systems. Swath MBESs produce multiple beams

from a single transducer whereas sweep MBESs consist of an array of SBESs mounted on side-

ward pointing carriers (de Jong, 2002). Within this work, only swath MBES systems are addressed,

and therefore the term MBES refers to swath systems only.

2.1. Multibeam echo sounder theory

Most of the modern (swath) MBES systems use the Mills cross technique to form a swath of acoustic

beams (Fig. 2-1). A Mills cross consists of two perpendicular transducer arrays, a projector array

aligned along-track which transmits sound waves and a hydrophone array in across-track direction

which receives the echoes. A transducer converts an electric signal into an acoustic and vice versa.

That is because the diaphragm of the transducer starts vibrating when exposed to electric power. In

contact with water, the vibration generates an acoustic wave. Likewise, an incoming acoustic wave

causes a vibration of the diaphragm which can be translated into an electric current (de Jong, 2002).

Even though the same transducer can be used to transmit and receive acoustic waves, one may

1SOund NAvigation and Ranging
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distinguish transducers which are only used for sound transmission, called sound sources, and those

only used for reception, called hydrophones. As a sound pulse expands spherically from its source,

an individual sound source cannot transmit acoustic energy in a specific direction. By arranging

multiple sound sources in a line array, the pattern of sound interference can be used to achieve

some degree of directivity. Thereby the basic idea is that constructive interference focuses a main

lobe of acoustic energy perpendicular to the transducer array, while the spread of sound in other

directions (side lobes) is strongly suppressed by destructive interference. That way the projector

array forms a transmitting beam that ensonifies an area of seafloor which is wide across-track and

narrow along-track. The same beam pattern applies to the hydrophones of the receiving array which

are in contrast sensitized to receive sound from a certain direction. By introducing a time delay to the

individual hydrophone readings, the main lobe of the beam pattern can computationally be shifted

such that its axis is steered to some angle from the perpendicular. That way, the hydrophone array

can receive parallel beams at different angles that are narrow across-track and wide along-track

without being physically changed. The intersections of the area ensonified by the projector array

and the multiple strips observed by the steered beams of the hydrophone array are the discrete

locations (footprints) of the soundings in each ping (SeaBeam, 2000).

Figure 2-1: Mills cross arrangement of projector (transmit) and hydrophone (receive) array to form a swath of
beams which is narrow along-track and wide across-track (How-to-FMGT: FMGT Supported Data
Formats 2020).

Depending on the use of a MBES, the desirable characteristics of a system vary. One of the most

essential properties is the acoustic frequency. It determines the range and sediment penetration of

echo sounders. This is primarily because the attenuation of the acoustic signal in water is propor-

tional to its frequency. Attenuation is the combined loss of energy caused by absorption, spherical

3
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spreading and scattering by particles in the water column (Lurton, 2002). The higher the frequency,

the stronger the signal is attenuated and thus the lower its range and sediment penetration. The

acoustic frequencies of the different MBESs range from:

Deep-water systems (deeper than 1,500 m) with 12 to 50 kHz,

over shallow-water systems (shallower than 1,500 m) with 50 to 200 kHz,

up to high-resolution systems (shallower than 100 m) with frequencies higher than 200 kHz.

The acoustic frequency of the MBES also influences the beam width2 of individual beams in the

swath. To produce a signal with a lower frequency but the same beam width, a larger transducer

is required or, conversely, using the same transducer, a decrease in frequency will result in a wider

beam (de Jong, 2002). Typical beam widths are in the order of less than one degree up to a few de-

grees per beam. For high-frequency echo sounders, the same transducer array can typically be used

for both transmission and reception so that the transducer size is small enough to be mounted e.g.

on underwater vehicles such as ROVs. However, low-frequency echo sounders require physically

separated transmission and reception arrays with a size of up to several meters. Only sufficiently

large vessels are able to carry the heavy equipment in the hull of the ship. For those systems, the

transmission array alone defines the along-track resolution while the across-track resolution is im-

posed by the reception array. The footprint of an individual beam typically has an ellipsoidal shape

and can be computed as the product of the beam pointing angle θ, the beam width of the trans-

mission φT and reception array φR, the (mean) water depth z and the mean slope of the seafloor.

Under the simplification of a flat seafloor, the length of the ellipse in athwart direction ay may be

approximated by (IHO, 2005):

ay =
2z

cos2(θ)
tan
(
φR

2

)
(2-1)

And the width of the footprint, which can be reasonably approximated as a set of overlapping beam

ellipses, in fore-aft direction ax is roughly given by (IHO, 2005):

ax =
2z

cos(θ)
tan
(
φT

2

)
(2-2)

Assuming a MBES with a swath opening angle of 140◦ (max beam pointing angles of ± 70◦) and a

TX x RX beam width of 0.5 x 1◦, one can exemplary determine the approximate footprint of a beam

at any given beam pointing angle and depth using equations 2-1 and 2-2. For a depth of 1,500 m,

the inner beam (beam pointing angle of 0◦) has a footprint length of 26 m and a width of 13 m. The

outer beam at a beam pointing angle of 70◦ has a length of 224 m and a width of 38 m. At a depth

of 3,000 m, the inner beam already has a footprint of 52 x 26 m and the outer beam 448 x 77 m. The

width of the entire swath for a flat seafloor can by computed by:

SW = 2z tan
(
∆θ

2

)
(2-3)

Whereas ∆θ is the swath opening angle. For the same MBES system as mentioned above, the

2Considered at −3 dB
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swath width at a depth of 1,500 m would be roughly 2,100 m, at double the water depth (3,000 m),

the swath width also doubles to 4,200 m.

While the horizontal resolution of a MBES is determined by the beam width, the target depth (and

geometry) and the beam pointing angle, the vertical resolution is given by the pulse length. The pulse

length is the product of the pulse duration and the sound velocity in sea water which is approximately

1,500 m s−1. The variation of pulse length helps to overcome attenuation losses in the water column.

However, with an increase of the pulse length, the vertical resolution decreases as two objects are

only distinguishable if they are more than 1/2 the pulse length apart. For a signal with a pulse duration

of 0.5 ms and thus a pulse length of 0.75 m, the vertical resolution is roughly 0.38 m. For a pulse

duration of 2 ms, the vertical resolution already decreases to 1.5 m (de Jong, 2002).

As the sound pulse travels trough the water to the seafloor and back again, the propagation proper-

ties in water play an important role in the measurement process. However, the sound propagation

properties are not constant but actually vary throughout the water column. They depend on tem-

perature, salinity and depth, which in combination define the density of water. For the upper water

column between the surface and the thermocline3, temperature is the dominant factor. Tempera-

ture is highly variable depending on geographical and oceanographic seasonal changes. Below the

thermocline, depth becomes the major impact. As depth increases the hydrostatic pressure grows,

which causes an in first approximation linear increase of sound velocity (Lurton, 2002).

Generally, water layers with very different densities tend not to mix because of an effect called strat-

ification. At the borders of two media with different propagation properties, an acoustic ray gets

refracted and reflected. Refraction occurs due to changes of the acoustic impedance (product of

water density and sound velocity) either continuously or at distinct bounding surfaces. According to

Snell’s law, refraction causes the path of a sound wave to bend (Hovem, 2013). After the reflection

at the seafloor, the sound wave propagates back to the MBES and gets refracted again. This ef-

fect occurs especially at the outer beams of the swath where the acoustic paths are longer and the

incidence angles at bounding surfaces larger. To correct the acoustic path, sound velocity profiles

(SVPs) are required. Two of the mostly used devices to acquire SVPs are sound velocity and con-

ductivity, temperature, depth (CTD) probes. Both devices are lowered through the water column and

take measurements on their way to create the SVPs. Sound velocity probes directly determine the

sound velocity by measuring the time, which a ping needs to travel a short known distance, whereas

CTDs measure each parameter of the sound velocity individually (conductivity/salinity, temperature

and depth/pressure) to calculate the sound velocity. Another sound velocity probe is usually per-

manently mounted at the transducer face for sound velocity measurements to improve the beam

forming (IHO, 2005).

Other ancillary measurement systems required are a motion sensor and a position system to com-

pensate for the ships motion and to transform the MBES measurements from the vessel coordinate

system to a global one. Usually the vessel coordinate system is a right-handed system with x point-

ing towards the bow, z pointing downwards and y completing the right-handed coordinate system

(pointing towards starboard). Generally, a ship can rotate around and translate along three axis.

Thereby, the three rotations pitch (around the y-axis), roll (around the x-axis) and yaw (around the

3Water layer between the warm surface water and the cooler deep water below
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z-axis) which are referred to as the ships attitude, and the vertical translation heave are relevant for

MBES systems. To convert the measured beams of the swath from polar coordinates relative to the

MBES transducer to the vessel coordinate system, the ship’s attitude and heave need to be deter-

mined. Inertial measurement units (IMUs) consisting of three accelerometers and three angular rate

sensors are the most common sensors for roll, pitch and heave. Yaw, when measured in degrees

from north (true, magnetic or compass), is referred to as heading. Heading is especially important

for swath systems. It can be measured by gyro- or fluxgate compasses or differential GNSS4. GNSS

is also the preferred system for positioning. The position system is required to transform from the

vessel coordinate system to a global system. Commonly, GNSS sensors are used for positioning

either in pseudo-differential or in RTK5 mode (IHO, 2005; de Jong, 2002).

2.1.1. Bathymetry

The bathymetry measurement is the primary functionality of any hydrographic echo sounder, includ-

ing MBESs. It aims to retrieve accurate information on the geometry of the seafloor. The fundamen-

tal principle is the measurement of the time delay t between signal transmission and reception and

its association with the (slant) range R between transducer and seafloor (Fig. 2-2). Provided that the

beam pointing angle θ and the sound velocity c are known, the two way travel time can be converted

to depth z and distance y in athwartships direction from the MBES transducer (Lurton, 2002):

z =
ct
2

cos θ = R cos θ

y =
ct
2

sin θ = R sin θ
(2-4)

Figure 2-2: Fundamental principle of MBESs: Water depth z and (across-track) distance y as derivatives of
range R to the seafloor and beam pointing angle θ (Lurton, 2002).

2.1.1.1. Measurements

There are different techniques which can be used to determine the time-angle couples of each beam

bottom detection. The two main divisions being (IHO, 2005):

4Global Navigation Satellite System
5Real Time Kinematic
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Amplitude detection: The returned signal is sampled in time for each beam angle. The sample

amplitudes belonging to a beam are then used to determine the travel time of a depth point.

There are different methods how to use the sample amplitudes for detection (leading edge,

maximum amplitude or center of mass of the reflected signal). Typically, amplitude detection

algorithms are applied to beams around normal incidence with high amplitudes and fewer sam-

ples.

Phase detection: For outer beams with more grazing angles, the sample amplitudes decrease

and the number of samples may become very large. The amplitude gets thus more blurred

resulting in poor results when applying amplitude detection algorithms. The phase detection

algorithm artificially subdivides the transducer array of a beam in two sub-arrays. Each of the

two forms a beam in the same direction (beam angle). The time of arrival is then defined by the

zero crossing of the returning sequence of phase differences “corresponding to the arrival of a

signal from a target exactly on the beam axis” (Lurton, 2002).

Generally, inaccuracies in determining the time-angle couples of each beam decisively influence the

accuracy of the beam coordinate estimation. The errors induced by an erroneous time measurement

are given by (Lurton, 2002):

δzt = δR cos θ

δyt = δR sin θ
(2-5)

For angular error the impact on the y, z coordinates is given by (Lurton, 2002):

δzθ = R sin θ δθ

δyθ = R cos θ δθ
(2-6)

So far the x coordinate in fore-aft direction was neglected based on the assumption that the sensor

is perfectly aligned with the ships axis and hence x = 0. It is at this point noteworthy that angular

errors cause x to deviate from 0.

The overall accuracy is thereby not only influenced by errors in the acoustic measurement itself but

also by inaccuracies in the sound velocity correction and movement of the support platform. The

latter, namely the attitude motion parameters roll, pitch and yaw and the vertical motion parameter

heave are measured in real-time. The accuracy demand depends on the performance requirements

of the survey. If high performance is pursued, roll and pitch are usually required with an accuracy

of 0.05◦ and heave with an accuracy of 0.05 m to 0.1 m (de Jong, 2002). Modern MBES systems

mostly compensate for the attitude of the support platforms in form of a pitch, roll and sometimes

also yaw stabilization. However, stabilization does not eliminate residual angular biases.

Equation(s) 2-4 are based on the assumption of a constant sound velocity throughout the water

column, and hence, a rectilinear acoustic path. But as explained above, the sound velocity in reality

varies throughout the water column causing the path of a sound pulse to bend. To reconstruct the

actual acoustic trajectory of a beam, ray6 tracing is applied. Based on sound velocity profiles, sound-

ing point positions are estimated starting with the initial beam angle by following the sound trace as
6Normal to the wavefront
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a function of time along the water column. When the function reaches the measured time t, the

computation is stopped and the outermost extremity of the estimated path is set to be the sounding

position (Lurton, 2002). Another component of the sound velocity induced uncertainty arises from

variations of sound velocity at the transducer face. In order to steer the receiving beams, the MBES

uses a sound velocity which is typically measured close to the transducer face. Knowing the exact

sound velocity is paramount to determine the right time delays for the individual hydrophone read-

ings along the receiver array. Deviations from the actual sound velocity cause an error in the beam

pointing angle (IHO, 2005).

Hare (1995) describes the total error budget of the MBES measurement in great detail. Without

stressing to much on excessive explanations, it may be summarized as follows:

Depth error budget:

MBES system error, in fact range and beam angle measurement error

Error of support platform’s attitude (especially roll and pitch) caused either by measurement

errors, possible stabilization errors and/or angular misalignment of sensors

Error of measured or induced (by roll and pitch) heave

Errors caused by refraction due to sound velocity variations affecting range, beam angle and

beam steering

Error budget for the sounding position:

Positioning system (GNSS) error

Latency error or rather the lack of knowledge of latency

Error of the relative sounding position to the transducer due to MBES system errors, error in

attitude measurement or sensor alignment, or refraction errors

Heading error due to measurement error or transducer yaw misalignment

Error of the relative positions of the GNSS antenna(s) and the transducer

For the sake of completeness, the depth error budget has to be extended to include dynamic draft

errors which are caused by squat and load, and water level errors such as the measurement and

prediction errors of tidal effects (Hare, 1995).

2.1.1.2. Processing

The MBES bathymetry measurement is a very complex process due to the swath geometry, the

many ancillary sensors required and the data volume which they produce. Moreover, the initial

interest of hydrographic surveys evolved from the safety of navigation. Accordingly, the accuracy

and also the reliability demands on those surveys are high.

The International Hydrographic Organization (IHO) published and continuously develops the S-44

Standards for Hydrographic Surveys which aim “to provide a set of standards for hydrographic sur-

veys primarily used to compile navigational charts essential for the safety of navigation, knowledge

and the protection of the marine environment” (IHO, 2020). It thereby has to be understood as min-

imum standards which have to be specified for the intended task. Generally, IHO (2020) defines

different (safety of navigation) survey orders depending on the water depth, geophysical properties,

and expected shipping types.
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There are three different types of errors which can be found in bathymetric data sets (Artilheiro,

1998):

Blunders are large errors caused by a machine, either a defective mechanical or electronic device.

Another term often used in a surveying context is outlier. Outliers are defined as errors of random

quantity which lie outside some arbitrary statistical limits. The term covers both blunders but also

the set of actually existing hazards or minimum depths which fall out of the expected distribution of

data points. Within this thesis, the terms are rather used in an equivalent manner.

Systematic errors are the second type of error which might occur in bathymetric data sets. They are

mainly caused by constant offsets (fixed) or biases (variable) either spatially or in time. Examples

for this are time offsets of sensors, sensor misalignment or a wrong sound velocity profile. Those

errors can be minimized by proper calibration procedures and good surveying practice (Le Deunf

et al., 2020).

Finally, after removing blunders and systematic errors, stochastic deviations or also random errors

remain. Those errors are intrinsic to measurement processes. Usually they follow a normal distribu-

tion and can be analyzed statistically.

For hydrographic purposes it is vital to correctly remove blunders without mistakenly deleting sound-

ings actually representing solid objects above the seafloor, such as wrecks or boulders. There are

different possible causes for the occurrence of blunders. They might be subdivided into environmen-

tal factors and system internal problems. Environmental factors include all possible circumstances

under which a reflection is caused in the water column. For example shoals of fish or kelp, abnor-

mal sound velocity variations due to sudden jumps in temperature or salinity, or multiple reflections

and paths. On the other hand, system internal problems with the bottom detection algorithm or

equipment malfunction can also be a potential cause of blunders (Artilheiro, 1998). Generally, outer

beams are more prone to errors as inner beams as the signal has a longer way through the wa-

ter column, more grazing incidence angles and errors occurring in the MBES system itself show

stronger impact.

In the previous section the MBES error budget was briefly described comprising the depth and

position error. IHO (2008) outline the generic steps necessary to address and minimize all those

error sources. It should be mentioned though that in the latest edition (6.0) the guidelines for data

processing (annex B) are already outsourced, as their are meant to be included in the next edition

of the Manual on Hydrography (IHO M-13).

Generally, it is proposed to use all information sources available to ensure the presence of “ navi-

gationally significant soundings” (IHO, 2008). Also, it is not recommended to delete any kind of raw

data but to rather flag data as rejected if it is doubtful.

At first all the individual sensor raw data should be checked and if required corrected and/or cleaned.

A summary of the guidelines is presented in table 2-1.

Subsequently, the post-processed raw sensor data should be checked for any sensor latency and

merged to retrieve the final x (longitude), y (latitude), z (depth) coordinates of the soundings. Thereby

the spatial offsets of the system set up have to be considered.

The next step is the detection of blunders in the bathymetric point cloud. One may distinguish two
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Table 2-1: Post-processing of individual raw sensor data in the MBES system set up following the guide-
lines outlined in IHO (2008)

Position data

Merging of position data from different sensors (if necessary)

Checking the position data

Eliminating/correcting position jumps

Attitude data
Checking the attitude data (heading, pitch, roll and heave)

Eliminating/correcting data jumps

Sound velocity data

Checking sound velocity profiles

Correcting two-way travel time and refraction

Real-time correction should be possible to override in post processing

Depth data

Corrections for potential water level changes

Corrections for motion of support platform

Corrections for draft of ship

It should be possible to re-process data which has been corrected in real-
time

major types of data cleaning, namely automatic (non-interactive) versus manual (interactive). For

a long time it was common practice to manually clean the data. The detection of blunders com-

pletely relied on the subjective decision of a trained hydrographer. The manual cleaning procedure

is very lengthy and time consuming. Often it takes double the processing time compared to the

acquisition time (Le Deunf et al., 2020). Also it does not guarantee that all blunders are detected,

respectively, all outliers representing actual objects are preserved. That is why generally the use

of automated or semi-automated approaches is recommended by IHO (2008) on condition that the

applied algorithm(s) have been documented, tested and demonstrated to produce repeatable and

accurate results. Suitable algorithms comprise statistical techniques such as robust estimation but

also simple threshold values. It is furthermore recommended to review the automated result for vali-

dation and/or to resolve potential ambiguities. Thereby it is helpful to display all available information

such as backscatter or detection information in a suitable manner, at best interactively, to support

the decision making.

2.1.2. Backscatter

While the bathymetry relies on the time and angle of the returning echo to retrieve geometrical

information of the seafloor, backscatter is based on the intensity of the returning signal to determine

seafloor (acoustic) reflectivity. The reflective properties of the seafloor can directly be related to the

nature of the seafloor and some of its physical characteristics. Generally, the term backscatter refers

to the part of a sound wave which is scattered back to the direction it came from. Usually backscatter

is caused by a diffuse reflection at a rough surface whereby, indeed, most of the incident acoustic

wave is reflected away or scattered in other directions (Fig. 2-3). The sole exception is a sound wave

at normal incidence, where backscatter is caused by the (specular) reflection. Backscatter does not

only occur at the seafloor but also at particles in the water column such as fish or gas bubbles. Water

column backscatter itself is an active area of research, however, it is not addressed in this work and
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therefore the term backscatter refers to seafloor backscatter only (Weber and Lurton, 2015).

Figure 2-3: Backscatter is the part of an incident (acoustic) wave which is scattered back whereby most of the
wave is reflected away or scattered in other directions (Weber and Lurton, 2015).

2.1.2.1. Measurements

The interest of (seafloor) backscatter focuses on the acoustic response of the seafloor. Unfortu-

nately, the intensity of the backscattered acoustic wave does not only depend on the effect of the

seafloor but rather on the continuous interaction with its environment from signal transmission until

reception. The active sonar equation is commonly used to quantify the performance of an echo

sounder in consideration of the environmental conditions. Following an implementation of the sonar

equation by Weber and Lurton (2015), the intensity of the backscatter (echo level EL) is the sum of

the source level SL, the transmission loss TL and the target strength TS:

EL = SL – 2TL + TS (2-7)

The MBES transmits a signal with a source level SL (in dB re 1 µPa at 1 m). Afterwards the acoustic

wave propagates through the water, where its signal intensity decays/attenuates because of spread-

ing and absorption. The total effect of both is the transmission loss (TL). It depends on the range

to the seafloor R and the absorption coefficient α. The absorption coefficient (α in dB m−1) of water

depends, just as the sound velocity, on the water properties but also the signal frequency. Assuming

that the transmission loss is identical on the way to the target and back to the receiver, the impact of

transmission (TL in dB) loss is doubled (Hammerstad, 2000):

2TL = 2αR + 40 log10 R (2-8)

There are generally three different kinds of noise in the water column, ambient noise caused by,

among others, breaking waves, marine mammals or ships, self-noise of the sonar itself or its plat-

form, and reverberation which is the effect of backscatter from features of no interest (Weber and

Lurton, 2015). However, equation 2-7 neglects the contribution of noise assuming that the echo level

is sufficiently high to significantly exceed the noise level.

Finally, the target strength (TS) is the effect of a target such as the seafloor where some part of

the acoustic wave is scattered back to the MBES receiver. Target strength (TS in dB re 1 m2) is the

relation of the intensity backscattered at a target to the incident intensity (SL – TL). It is the quantity

of the sonar equation relevant for backscatter measurements. The target strength of the seafloor
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depends on the scattering cross section σ and the ensonified area A (Weber and Lurton, 2015):

TS = 10 log10(σ A) = Sb + 10 log10 A (2-9)

Sb is referred to as the bottom scattering strength. Sb is independent of the sonar properties (ex-

cept the frequency), but it depends on the incidence angle at the seafloor and on some seafloor

dependent parameters including its impedance (product of density and sound velocity), interface

roughness and heterogeneities within the sediment volume (biological, mineral, gas, etc.). In col-

loquial language, one may say that the bottom scattering strength depends on the “hardness” and

“roughness” of the seafloor and possibly also the degree of homogeneity.

Hardness is thereby defined as the contrast between the characteristic impedance of the seafloor

compared to the water above. Water has roughly a sound velocity of 1,500 m s−1 and a density

of 1,000 kg m−3 which yields an impedance Z of 1.5x 10−6 kg m−2 s−1. In contrast, clay has an

impedance of 1.68x 10−6 kg m−2 s−1 and coarse sand has an impedance of 4.18x 10−6 kg m−2 s−1

(numbers extracted from Weber and Lurton, 2015). The impedance contrast between water and

clay is hence much smaller than between water and coarse sand, and thus, coarse sand is acousti-

cally speaking harder than clay. That means that comparably more of the acoustic energy is reflected

from the coarse sand as from the clay, and conversely, less of the acoustic energy is transmitted into

the seafloor. The amount of energy which is reflected at the boundary between seawater (medium

1) and seafloor (medium 2) is given by the reflection coefficient R (Weber and Lurton, 2015):

R =
Z2 cos θi – Z1 cos θt

Z2 cos θi + Z1 cos θt
(2-10)

Where θi is the incident angle and θt is the transmitted angle. These two are related by Snell’s law

(Weber and Lurton, 2015):

sin θi

c1
=

sin θt

c2
(2-11)

Considering equations 2-10 and 2-11, the reflection coefficient increases with the incident angle and

hence less acoustic energy is transmitted into the seafloor. This is valid until the so called critical

angle, which is so grazing that no energy is transmitted into the seafloor.

The seafloor roughness is the effect actually enabling swath sounding systems (with combined trans-

mitters and receivers) in first place, as otherwise all the acoustic energy would simply be reflected

away. Roughness in this context has to be understood in relation to the signal wavelength. Typi-

cal MBES wavelength range from circa 0.38 cm for 400 kHz high-resolution systems to 12.5 cm for

12 kHz deep-water systems. The seafloor interface is considered rough if the interface regularities

are much greater than the wavelength and smooth if the interface regularities are much smaller.

Figure 2-4 shows the backscatter level (dB) for a signal with a high (HF) and a low frequency (LF)

as a function of the incidence angle. The scenario on the right side shows an acoustically rough

seafloor compared to HF as well as the LF. The backscatter level is governed by interface rough-

ness scattering with almost no specular reflection. Even at grazing angles, the backscatter level is
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high. In contrast, the left scenario shows a low-moderate acoustic roughness. In that case, most

of the scattered wave is still focused around the specular direction and a lesser part is scattered

in other directions. For near-normal incidence where backscatter is mainly caused by the specular

reflection, the backscatter level is high. The interface roughness scatters only little acoustic energy

at grazing angles back to the receiver. The effect is stronger for the low frequency (hence longer

wavelength) as the interface is comparably smoother (Weber and Lurton, 2015).

Figure 2-4: Backscatter (in dB) as function of incidence angle. The acoustically rougher and harder the
seafloor is, the stronger the specular reflection and volume scattering are dominated by inter-
face roughness scattering (Weber and Lurton, 2015).

In addition to interface scattering, the left scenario in figure 2-4 also shows volume scattering from

within the sediment volume itself. Volume scattering occurs at inhomogeneities in the sediments

such as gas bubbles, benthic animals etc. or heterogeneities of the sediment itself such as a change

of the sediment composition. Those features are hit by the part of the sound wave which is trans-

mitted into the seafloor and generate a reflection themselves. The sediment volume backscatter is

maximal at the intermediate oblique incidence angles between the specular reflection in the normal

direction and very grazing angles close to the critical angle. Also, the effect is stronger for softer sed-

iments (reflection vs. transmission coefficient) and deeper frequencies (Weber and Lurton, 2015).

2.1.2.2. Processing

Processing of backscatter data has generally two possible outcomes, backscatter mosaics and the

less common angular response. Backscatter mosaics are georeferenced images, typically in gray-

scale, representing the (seafloor) backscattering strength (BS) or a related variable. Angular re-

sponse describes the variation of BS as a function of the angle of incidence at the seafloor (Schimel

et al., 2015). Both representations aim to enable the identification of different seafloor types and

where applicable corresponding regions. To produce any meaningful output from the raw backscat-

ter data, a sequence of processing steps has to be applied (Fig. 2-5). The actual implementation

of backscatter processing highly varies depending on the MBES system and the used processing

software. For this work, the processing steps and order, outlined by Schimel et al. (2018), are used

as a generic approach.
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Figure 2-5: Backscatter processing workflow (Schimel et al., 2018).

Raw data decoding

In a first step, the relevant raw sonar data needs to be decoded. There are three main types of

delivery for raw backscatter data (Schimel et al., 2018):

1. “Single value per beam” whereby one single intensity value is recorded for each beam which

corresponds either to the amplitude value of the bottom detection or an average amplitude of

all samples in the beam footprint.

2. “Beam time series” consist of series of intensity samples for each beam mimicking the propa-

gation of the acoustic signal over the seafloor (Fig. 2-6).

3. “Half-swath time series” which consist of an uninterrupted intensity sample series for each side

of the swath, respectively.

Depending on the sonar manufacturer, different types of backscatter data may or may not be avail-

able and also the actual implementation might vary.

Georeferencing

In a second step the intensity samples are georeferenced. That means that the geographical loca-

tion of each sample, whether it is an individual value or part of a series, has to be determined based

on the available bathymetric information. For the single value per beam samples, the implementa-

tion is very much straightforward. The location of an individual sample is directly provided by the

bathymetry of its associated sounding point. For the other two types of backscatter data it is not as

simple. In general, there are two approaches to georeference beam time series data. The first is

to find the sample in each beam time series which corresponds to the bottom detection and georef-

erence it by using the respective bathymetric information. The other samples in the time series are

then georeferenced by interpolation (Schimel et al., 2015). This approach appears simple at first,
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Figure 2-6: Schema of beam time series backscatter with discrete amplitude samples in consecutive beams
(How-to-FMGT: FMGT Supported Data Formats 2020).

however, depending on the specific data (manufacturer and model) it requires some more interme-

diate processing. The second approach is especially suitable for beam time series data which has

been “formed specifically as to create a continuous trace along the seafloor when concatenated”

(Schimel et al., 2018). Those data sets should be transformed into half-swath time series and geo-

referenced as such. Beaudoin et al. (2002) suggest to georeference half-swath time series with an

improved slant-range correction based on two-way travel times and the across-track offsets of the

beams per time series.

Radiometric corrections

As the active sonar equation (Equ. 2-7) shows, the recorded echo level has significantly been altered

on its way to the seafloor and back. Therefore the raw backscatter data recorded by the MBES

itself is not directly exploitable but first needs to be corrected for those undesirable dependencies.

Radiometric corrections (step three) are meant to adjust the raw backscatter to some meaningful BS

value which only depends on the signal acoustic frequency, the angle of incidence at the seafloor

and the characteristics of the seafloor (Lurton, 2002). Schimel et al. (2018) classify three ‘themes’

of radiometric corrections:

Corrections for gains applied during reception

This correction addresses all modification which are applied to the backscatter level between sig-

nal reception and its recording in the raw data file. Typically, the analog signal from the receiver

unit is amplified using a static gain and may optionally be further amplified by a dynamic gain to

compensate for the transmission loss in the water column. Usually, further gains are applied after

the analog to digital conversion. Often those gains are dynamically fitted to range, depth or other

measurement parameters. The digital gains typically address the physical parameters of the sonar
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equation such as the ensonified area or angular dependence, and hence, are in principle desirable.

However, especially the analog but also the digital gains are based on generic assumptions or es-

timated parameters from, for example, previous pings. That is why removing them and applying

accurate corrections in post-processing might improve the result (Schimel et al., 2015).

Corrections for the interaction with the water column and seafloor

These corrections are the compensation for the physical interaction of the sound pulse with its

environment, namely the transmission loss in the water column and the extent of the ensonified

seafloor area. The two way transmission loss (Equ. 2-8) depends on the range to the seafloor and

the absorption coefficient of the water. Theoretically, if the absorption through depth was known,

its effect could directly be modeled for the path of the signal. But even though the absorption

coefficient might be estimated from CTD measurements, it is still commonplace to use a single

value approximated for an average depth in order to compensate for transmission loss (Schimel et

al., 2018).

The compensation for ensonified seafloor requires the estimation of the area ensonified by the pulse

for each time sample in the return signal. The area ensonified by an individual beam depends on

the geometry of the beam itself but also the geometry of the seafloor. If the seafloor was flat (and

horizontal), the areas ensonified by beams near normal incidence are said to be beam-limited,

whereas beams at oblique incidence are pulse-limited (Brown et al., 2015). Beam-limited means

that the whole area of seafloor within the beam is ensonified simultaneously, and hence, the along-

and across-track beam width (beam pattern) determine the extent of the area. At oblique incidences,

the sound pulse gradually ensonifies the area of seafloor covered by the beam. Then the extent of

ensonified area is given in along-track direction by the the along-track beam width and in across-

track direction by effective pulse length projected onto the seafloor (Weber and Lurton, 2015). While

simple models use the assumption of a flat seafloor to determine the extent of the ensonified seafloor

area, more advanced ones such as described by Beaudoin et al. (2002) also consider the geometry

of the seafloor from the available bathymetric information.

Corrections for the mechanical properties of the transducer

Those corrections are supposed to compensate for the mechanical characteristics of the transducer.

Included are corrections for the source level and the transmit and receive beam patterns. Informa-

tion of the source level is usually available as a nominal value for different MBES models and modes

of operation. It is typically compensated at an early stage along with the reception gains. However,

the actual transmit and receive beam pattern is usually not known. Sometimes there is a combined

transmit and receive beam pattern available which was tested on a prototype under laboratory con-

ditions. Though individual sensors usually vary slightly from this prototypical behavior, especially as

they age. To accurately compensate for the mechanical properties of the transducer a calibration

would be required. Those calibration values could be applied in post-processing (Schimel et al.,

2018).

Angular responses

So far the recorded amplitude values are geometrically and radiometrically corrected to a backscat-

tering strength which only depends on the signal frequency, the angle of incidence at the seafloor
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and the seafloor characteristics itself. At this state of processing the angular response analysis

takes place. The aim of analyzing the angular response is to correlate the seafloor characteristics

to the backscatter variation with incidence angle (at a given frequency). Therefore backscatter and

incidence angle couples are compiled over seafloor areas which appear to share common character-

istics. Thereby the aim is to cover a wide range of the incidence angles. Afterwards two approaches

to analyze the gathered information are possible, either a geophysical or an empirical. The former

is based on geophysical models of angular responses which are fitted into the data. The latter

approach is more pragmatic and relies on simple empirical models instead (Schimel et al., 2015).

Angle dependence removal

Stage four in the processing chain is the removal of the angular dependence of the backscattering

strength. What is of interest in the angular response analysis, actually hinders the interpretation of

backscatter mosaics as angle-dependent variations to some degree mask the seafloor-dependent

differences. Yet this step is insofar delicate as the angular dependence itself hinges on the type

of seafloor. Most often there is no prior knowledge of the seafloor type and its spatial variability

available (hence the survey). Instead a procedure has to be found which overcomes the lack at

best. Schimel et al. (2018) describes the standard technique comprised of two basic steps:

1. For each sample subtract the expected BS level according to the incidence angle.

2. Substitute a reference BS value corresponding to a reference incidence angle or interval.

There are two influencing factors which significantly determine the performance of the algorithm,

namely how the expected BS values are derived and what angle or angular interval is used as refer-

ence. For typical seafloor types there are generic angular responses available, either measured or

generated from physical models. But again, as usually the seafloor type is unknown, the more com-

mon approach is to determine the expected BS curves from the data itself. Therefore the angular

response for a subset of data is computed. The larger the subset, the more likely statistical variations

are smoothed out which would otherwise cause across-track artifacts. On the other hand, the prob-

ability increases that it overlays different types of seafloor, mixing up their angular responses which

produces along-track artifacts (Schimel et al., 2018). The complexity of different implementations

strongly varies from the choice of static subsets up to adaptive algorithms using moving window

functions to optimize the expected angular response curve (Schimel et al., 2015).

On the other hand, also the reference BS level can significantly influence the result. While some

implementations use relatively wide angle intervals between 20◦ to 60◦, others suggest to use ex-

plicit angles 45◦ where the angular response differs most strongly between different seafloor types

(Schimel et al., 2015).

Pre-mosaicing corrections

This step comprises possible operations which are meant to enhance the visual appearance of the

final mosaic. Those corrections could optionally also be applied to the final mosaic. A desirable

correction might be to downsample the backscatter data. Depending on the chosen backscatter

type, the data might be present in a very high resolution exceeding the grid size of the final mosaic.

To avoid aliasing effects it can be helpful to downsample the data to approximately the final grid

resolution.
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Another possible possible correction is to despeckle the backscatter data. Speckle noise is caused

by stochastic fluctuations of the signal sampled at the transducer head (Fonseca and Calder, 2005).

The removal of speckle can improve the interpretability of the backscatter data.

Mosaicing

In a last step the georeferenced and corrected backscatter is mapped into mosaics. The term comes

from the time when backscatter data was delivered in individual images which had to be combined

in a mosaic. Nowadays this step rather consists of gridding algorithms. Thereby special attention

is paid on the choice of suitable grid parameters and how to combine overlapping data seamlessly

(Schimel et al., 2018).

2.2. Kongsberg EM series data formats

Hydrographic raw data is typically delivered in a binary format with the data being structured in data-

grams from the individual sensors such as the MBES itself but also external senors like the motion

or position sensor. Each output datagram has a header including some supplemental information

and the actual data body which is also called payload. Kongsberg EM series echo sounders write

data in files with the suffix *.all. Each datagram includes two control characters, STX7 and ETX8,

the datagram type, a time tag and a checksum. The date related information in all Kongsberg (EM

series) data is given as 10,000 · year + 100 · month + day and the time is given in milliseconds

from midnight. All information regarding the datagram format was extracted from the specification

described in Kongsberg (2018).

MBES parameter

Some of the more generic information transmitted by Kongsberg MBESs are datagrams containing

the system parameters. Among others they can be distinguished in runtime and installation parame-

ters. The latter is stored in the eponymous datagram ‘installation parameters’. It is generally issued

once when logging is turned on and also when it is turned off i.e., at the start and end of a survey

line. For each sensor in the system the datagram logs the installation parameters. Among others it

contains the installation offsets and angular orientation of each sensor, any time delays or the time

system used, etc., but also some survey related information. Commonly, the installation parameters

are automatically extracted by the post-processing software as required and will not be inspected

by the operator. However, sometimes it may be necessary for troubleshooting purposes to manually

check those parameters.

The information logged in the ‘runtime parameters’ describes how the MBES has been operated

during the survey. It basically contains all the settings which are defined. This includes the different

modes, possible filters applied in real-time, min and max depth, and the swath configuration such

as the coverage on both sides of the swath. Some of the settings are thereby more relevant for the

backscatter processing. These include the absorption coefficient applied, the transmit pulse length,

the transmit and receive beam width, transmit power, and receive band width.

7Start of text character
8End of text character
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Bathymetric data

Kongsberg delivers the bathymetric data in two different formats, the raw MBES data and some

preprocessed data. The raw MBES data is written in ‘raw range and (beam) angle’ datagrams.

There are minor differences between different EM series models but generally, the raw MBES data

includes detailed information on the transmit sectors and reception beams. For each transmit sector

of the ping there is information given about the characteristics of the transmitted signal such as the

signal length, the center frequency, the band width, etc. For each receiver beam, the beam pointing

angle, the associated transmit sector, some information about the detection, the two way travel time

and an average reflectivity value are given (Kongsberg, 2018).

The preprocessed bathymetry data is depending on the MBES model either stored in the ‘depth’

or the ‘XYZ’ datagram. The two basically hold the same information but have nonetheless slight

differences. The basic data contained in both datagrams is the depth (z), across-track distance (y)

and along-track distance (x) for each beam. Thereby the beam data is given vertically from the

transmit transducer and horizontally from the location of the active positioning system’s reference

point. The beam data is already corrected for attitude (heave, roll and pitch) of the support platform,

sound speed at the transducer depth and ray bending through the water column. To get the depth

with respect to the water line, the transmit transducer depth at transmission time, which is also

included in both datagrams, has to be added to the depth value. In contrast to the XYZ datagram,

the depth datagram also contains the beam repression angle, the beam azimuth angle, and the

range for each beam. Those values are only corrected for the support platform’s attitude and the

sound velocity at the transducer depth and can thus be used for new ray bending calculations with

revised SVPs without any need for attitude data. However, if the depth data needs to be processed

with a new sound speed at the transducer depth, new attitude values or XYZ data is used instead,

full reprocessing starting with the raw range and beam angle data is required. Additionally, both

datagrams yield information about the quality, the detection window length and an average reflectivity

value of each beam, though with slightly different implementations. While the depth datagram only

contains beams with a valid bottom detection, the XYZ datagram generally includes data of all

beams which is to be able to store backscatter data also for beams lacking a valid detection. The

detection information of each beam is a 8 bit number indicating among other things the type of

detection (amplitude or phase detect) for valid beams and the method used to determine the x, y,

z values (interpolation, estimation, rejection or no data) for invalid beams. Additionally, a real time

data cleaning module is applied to flag out beams (Kongsberg, 2018).

Backscatter data

Kongsberg traditionally stores two types of backscatter data, single value per beam data in the

depth or XYZ datagrams (alongside with the bathymetric information) and beam time series data

in the ‘seabed image’ datagram. Both datagrams use scaled units of decibel typically in 0.1 dB

resolution. The single BS values are “an average value of the sample amplitude values. Short

averaging lengths are used and the maximum average level within a beam is chosen to represent

the beam BS” (Hammerstad, 2000). For very short echos, which might appear in shallow waters

near normal incidence, the maximum sample amplitude is taken instead. The beam time series data

provided in the seabed image datagram is “picked from the beam amplitude samples in such a way
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that when fitted together the total array of samples represent a continuous set along the bottom with

a fixed interval in range according to the range sampling rate of the multibeam echo sounder and

the mode it is used in” (Hammerstad, 2000). Attention is paid to layover effects and beams lacking

a valid detection. The amplitude samples corresponding to the bottom detection are identified in the

datagrams to allow for georeferencing.

Kongsberg applies one of the more complex dynamic gains (TVG) in the attempt to produce (radio-

metrically) corrected BS values. Thereby the applied gain is meant to compensate for:

Static gain applied to maximize the dynamic range

Dependence on the angle of incidence at the seafloor

Mechanical properties of the transducer

Transmission loss in the water column

Frequency dependent attenuation in the water column

Spherical spreading

Ensonified seafloor area

Hammerstad (2000) describes the implementation of the dynamic gain. Cutbacks made to enable

real-time processing include the initial assumption of a flat seafloor and the estimation of required

parameters based on previous pings. To remove the angular dependence, a distinction is being

made between small and large incidence angles. For larger angles (> 25◦) Kongsberg applies

Lambert’s law which (under the assumption of a uniform flat seafloor) describes the backscattering

strength as angular variation of a mean backscattering coefficient BSO. For smaller angles (< 25◦)

a linear change is assumed from the mean backscattering coefficient at normal incidence BSN to

the coefficient at oblique incidence BSO. The crossover angle between the two models was later

found to be quite variable so that it now can be adjusted between 5◦ to 30◦. Nominal values are

used for the source level and the receiver sensitivity. After beam forming, the values are corrected

for beam pointing angle dependent variations. Thereby the different frequencies of different transmit

sectors (of deep water systems) are considered. Afterwards bottom detection errors in estimated

parameters are corrected (Hammerstad, 2000).

External sensor data

Datagrams including data of external sensors are inter alia the ‘attitude’ datagram, the ‘position’ data-

gram and the ‘sound speed profile’ datagram. The attitude datagram includes roll, pitch, heave and

heading information of the motion sensor. The data is not required if the preprocessed bathymetry

data is used, but would be necessary for the raw data processing. The position datagram contains

obviously latitude (negative if southern hemisphere) and longitude (negative if western hemisphere)

but also speed and course over ground, heading and a quality measure of the position fix. It also in-

cludes a position system descriptor, indicating the source system of the position and the time used,

either (MBES) system time or input datagram time. In contrast to the attitude data, the position data

is in any case required to process the MBES data. It is noteworthy that the position and MBES

sensors are asynchronous for Kongsberg EM series systems. Typically, the position (and attitude)

sensor have a much higher measurement frequency as the MBES and need to be interpolated at

ping time.
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2.3. Jupyter Notebook and Python

On its official website Python is described as an “interpreted, object-oriented, high-level program-

ming language with dynamic semantics” (PSF, 2020). To understand the full meaning of this loaded

sentence the various components should be disassembled. The following information is based on

Löwis and Fishbeck (1997).

An interpreted language, as opposed to a compiled language, uses an interpreter to parse the

commands of a program and then executes them by sending the corresponding machine language

instructions. On the other hand, compiled languages use a compiler which directly translates the

program to machine code before execution. A compiled program will only work on the platform it

was designed for, whereas interpreted programs can be executed on any platform if the suitable

interpreter is available. Typically, interpreted languages are easier to debug and review, though they

tend to be slower.

In Python the main programming paradigm is object-oriented. An object is a data entity which may

have metadata in form of attributes and associated functionality called methods. Other programming

approaches include for example functional programming which in comparison emphasizes on func-

tions. While different programming approaches have different strengths and weaknesses, at some

point it becomes rather a question of personal preference what approach to use.

A high-level programming language is a language with a high degree of abstraction from the actual

machine instructions towards human language. On that scale, a low-level language would rank

at the opposite end, with a lower degree of abstraction. The abstraction itself eases the use of a

language and may automate computing system tasks as for example memory management.

The PYPL9 index asses the popularity based on how often language tutorials are searched on

Google. According to this index, Python is not only the most searched language but also the lan-

guage whose popularity grew the most in the last 5 years with 18.4 % (Carbonnelle, 2020, status

as of December 2020). On the globally popular development platform Github in 2019 Python had

ranked on place two of the most popular languages after the first placed language JavaScript and

just ahead of Java which has for a long time been placed second. When Python was for the first time

released, it was welcomed since it needed comparably fewer code to express the same functionality

as compared to Java. This improved the efficiency of developers and provided code with a good

readability (Skywell Software, 2020). On the other hand, Java was very popular for its free runtime

on popular platforms and an enhanced, configurable security.

According to Skywell Software (2020), one of the biggest differences is that Java in contrast to

Python is a statically typed language, meaning that variables have to be declared with a specific type.

As a consequence, Java code is often wordier and therefore less readable and efficient. Another

difference is that Python compiles implicitly on-the-fly while Java has to be compiled in advance.

Consequentially, Java code tends to be faster than Python. However, especially for non-professional

programmers, the readability and efficiency of code implementation in Python is comparably more

productive than the faster code execution in Java. Simply speaking, programs which are written

in Python are developed faster. According to inVerita (2020) Python is by far the most popular

9PopularitY of Programming Language
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language for data science and machine learning, since 83 % of the data professionals use Python.

This introduces another aspect that should be considered: The open source community for Python

in data science is huge. For many different applications, there are already libraries, packages and/or

modules to solve the task. Furthermore, Python can be used to extend and embed other languages

such as C or C++. In this context, Python can be understood as a glue language. Performance-

critical parts of a program can then be written in or adapted from the faster languages, while Python

is used for control and customization (van Rossum, 1998).

A development environment generally includes the procedures and tools for building a program.

The term is often used as a synonym for an integrated development environment (IDE), which is the

software development tool used to write, test, and debug a program. The most basic IDE would be a

simple text editor, while more advanced IDEs provide the programmer with a graphical user interface

to aid in development. One of them is the Jupyter Notebook. It is the graphical user interface to the

IPython (Interactive Python) shell which itself is meant to extend the Python interpreter in terms of

interactivity, and exploratory data-intensive computing (Perez and Granger, 2007).

“The notebook extends the console-based approach to interactive computing in a

qualitatively new direction, providing a web-based application suitable for capturing the

whole computation process: developing, documenting, and executing code, as well as

communicating the results.” (Jupyter Team, 2015)

A notebook has various dynamic display capabilities which not only allow the execution of

Python/IPython statements but also inter alia the integration of formatted text, static and dynamic

visualizations, mathematical equations, JavaScript widgets, etc. (Vanderplas, 2017). All of those

elements are saved within the notebook document and can thus be easily shared and distributed. In

order to execute code the notebook must be connected to a kernel. A kernel can be understood as

a program that runs and introspects the code of the user. IPython includes a kernel for Python code,

but there are meanwhile also kernels for several other languages in Jupyter Notebook available.

The Anaconda distribution is the recommended way to install Python for use in data science, partly

because it is operating system independent. There are two variants to use it: Miniconda, which

includes the Python interpreter and the conda package (and environment) manager, and Anaconda,

which additionally includes a bundle of pre-installed Python packages suitable for scientific comput-

ing.
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3. Methodology

The Kongsberg EM 122 is a deep water MBES system with a nominal frequency of 12 kHz and

an angular coverage sector of up to 150◦. Over a flat seafloor, the swath width can be up to six

times the water depth. During RV Sonne cruise SO268-3 the swath opening angle was set from

130◦ to 140◦ which roughly resulted in a swath width of around 22 km in 5,000 m water depth. The

separate transmit and receive array of the EM 122 are both linear arrays set up in a Mills cross

configuration. The model deployed on RV Sonne (Fig. 3-1) has a beam width of 0.5◦ x 1◦. The

transmit fan is split into different sectors which are independently steered according to the vessel

roll, pitch and yaw. The soundings are placed on a line perpendicular to the survey line ensuring

a uniform sampling of the seafloor. Normally, the sounding spacing is equidistant but an equiangle

mode is available. In high density equidistant mode the detections are derived from more than one

point within a beam, resulting in up to 432 soundings per swath. In dual swath mode, two swathes

with a slight alongtrack tilt are transmitted per ping recording up to 864 soundings per ping. The

tilt applied is chosen in consideration of depth, coverage and vessel speed to ensure a constant

sounding separation alongtrack. The ping rate is mainly determined by the two way travel time of

the pulse in the water column but is limited to ca. 5 Hz (Kongsberg, 2011; Kinne et al., 2019).

Figure 3-1: RV Sonne (www.bmbf.de)

The EM 122 logs two types of bathymetric data: ‘Raw range and angle’ and ‘XYZ’ depth datagrams.

As outlined in section 2.2, the latter can be understood as a preprocessed version of the former

as it already provides (vessel) coordinates per beam instead of beam opening angle and pulse

travel time information. The x, y, z coordinates are already corrected for vessel attitude (heave,

roll and pitch), sound speed at the transducer face and ray bending through the water column.

The choice of which of the two datagrams is initially used, essentially determines what kind of

corrections may be applied in postprocessing. IHO (2008) recommends to correct the raw data of

each sensor in the MBES system (position, motion, SVP and MBES) individually before merging

the corresponding data. Those corrections are only possible when using the raw beam data and

the other respective raw datagrams. However, the processing implementation is very complex and

tedious. Assuming that the data acquisition has been conducted diligently in a sense that any

potential sensor misalignment or time offset has been properly checked and calibrated in advance
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and enough sound velocity profiles have been taken underway, it seems justified to assume that the

real-time corrections for vessel motion and sound velocity applied to the depth data are sufficient.

Hence, despite the limited possibility for postprocessing corrections, the XYZ datagrams are used

as starting point for the bathymetry processing. To accommodate data where the above stated

assumption is violated, the bathymetry processing and (data) cleaning are kept separate with an

open ASCII interface. That way, any necessary corrections can be for now applied separately, while

the (raw) bathymetry processing can be implemented at a later point in time.

A similar decision is faced for the backscatter data. It is also logged in two different formats: Single

value per beam reflectivity is stored along with the bathymetry in the ’XYZ’ datagram and beam

time series data is separately stored in the ‘seabed image’ datagram. Since it is the more common

choice when working with backscatter data, the beam time series data is used as starting point

for the backscatter processing. While the single value per beam samples are georeferenced by

their associated bathymetry information, the seabed image data requires an additional processing

step to georeference all samples of the series. Generally, Kongsberg applies a quite complex TVG

correction to the raw backscatter which is meant to radiometrically correct the value to some mean-

ingful level related to the seafloor scattering properties. However, to correct the data in real-time,

some simplifications have to be presumed which downgrade the accuracy of the applied correc-

tion. To achieve the optimal outcome, the TVG would have to be taken out in postprocessing and

re-calculated using the available bathymetric information. As those computations can become very

comprehensive, they are not attempted within this thesis.

3.1. Available tools and algorithms

The initial idea is to find a suitable combination of available open source libraries to facilitate the

required processing of multibeam data. As mentioned previously, Python was chosen in part be-

cause of its large open source community, particularly in the data science (and machine learning)

community. When looking for customizable libraries, it is important to also consider licensing. Open

source in the software context means that the source code is open for inspection, modification, and

extension. Depending on the specific license, modification and distribution may be subject to con-

ditions, such as that the modified source code must be made available to the community (What is

open source? 2020). In the search for suitable libraries, the licensing did not really result in any

major restrictions. All of the tools mentioned below are published under an OSI1 approved license

(Open Source Initiative, 2020).

In examining the available tools and algorithms themselves, it was found that the point cloud pro-

cessing community is heavily rooted in LiDAR2. The hydrographic community was not extensive, at

least on GitHub. However, there are contributions: HydroOffice in particular seems to provide open

source code for water-related geoscience, though there was no real overlap with the objectives of

this work. Some fairly extensive Matlab scripts were also found, some of which even dealt with

MBES data processing. Unfortunately, these were not compatible with the structure of the thesis.

The libraries and modules that were finally selected are briefly explained below. While more than

the mentioned Python libraries are used in the thesis, the less essential ones are introduced in the

1Open Source Initiative
2Light Detection and Ranging
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respective section of the text.

pyALL

pyALL is a Python module which reads Kongsberg ALL files. It was written by Kennedy (2016) and

published under the Apache license. Files in the ALL format are binary, hence they cannot directly

be read. For that purpose pyALL uses the struct module of Python which converts between strings

of bytes and Python native data types. The pyALL module is built up on an ALLreader class. The

class has among others a method which reads the header of each datagram in a file. If the header

corresponds to a datagram which is intended to be used, the according datagram is passed for

reading. Each datagram type is thereby associated with an individual class. The datagram classes

have each a read method which finally decodes the binary string corresponding to the datagram

dependent class attributes. To illustrate the workflow it is exemplary assumed that the task is to

extract all position datagrams from a given ALL file. As a first step, the ALLreader is initiated.

While there are still datagrams in the file, the reader decodes the header of each datagram. If

the header information corresponds to the position datagram, the still encoded datagram is passed

to the initiator of the position class. By calling the position class’s read method, the datagram is

finally decoded and the values are stored as position class attributes (of that specific position class

instance) according to their Python data type. That specific position instance can then be further

processed in custom code. pyALL supports all the required datagram types used by Kongsberg and

furthermore provides some handy function. One example is a time helper function which converts

the Kongsberg date and time format into Python’s datetime format.

PDAL

PDAL (Point Data Abstraction Library) is a C++ library for point cloud processing released under the

FreeBSD (PDAL 2019) license. Its concept is based on modules that can be individually chained

together in pipelines to achieve a particular point cloud processing task. Since it has its origins in

LiDAR processing, many of the underlying modules are based on the basic principles and require-

ments of LiDAR. Unlike an alternative, monolithic approach, it has the main advantage of being able

to cover many more different situations by simply adjusting the modules and sequence, rather than

rewriting the entire program until it can solve that one, very specific task. In a sense, PDAL can be

seen as the point cloud data equivalent of GDAL (Geospatial Data Abstraction Library), intended for

processing vector and raster data. Since vector/raster and point cloud data are all kinds of geospa-

tial data, they share a common basis. Point cloud data, however, typically has an even larger volume

of data that requires “specialized processing and management techniques [...] to handle so much

data efficiently” (PDAL, 2020). As briefly mentioned earlier, for this purpose it is also advantageous

to offload performance-critical code to C++, as this can usually be executed faster. For this, PDAL

offers possibilities for embedding as well as extending Python.

Comparing PDAL to other available point cloud processing tools, there are some generic features

where PDAL is particularly well suited to the intent of this thesis: First, it can be freely used, redis-

tributed, and modified. In addition, it is not exclusively based on the LiDAR point cloud format LAS,

which other point processing software from the LiDAR community partially are. In addition, its clear

pipeline structure allows for the rapid construction and modification of different processing chains.

Much of the other open source point cloud software (CloudCompare, libLAS, etc.) is more desktop
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GUI oriented than library oriented. PDAL, on the other hand, allows an (experienced) programmer

to customize and extend the functionality of the library.

Before ultimately deciding on PDAL for the outlined task, two other libraries were tested: PCL3 and

Open3D. PCL (Rusu and Cousins, 2011) appeared to be more specific to the range of steps required

for the processing chain of point clouds with photogrammetric or LiDAR origins, such as registration,

filtering, segmentation, and visualization. PDAL attempts to work with the point clouds themselves,

regardless of their origin. Similar observations have been made with Open3D (Zhou et al., 2018).

It also focuses a lot on point cloud registration, segmentation, etc. It was found that Open3D has a

very convenient 3D visualization tool. However, in the end, PDAL, especially in combination with the

tools mentioned below, proved to be the most suitable for the purposes of this thesis.

Entwine

Entwine (Manning, 2016) is a data organization library designated to point cloud data of large vol-

umes. For this purpose it uses a specific indexed structure, the Entwine Point Tiles (EPTs). Entwine

is closely linked to PDAL and vice versa PDAL supports the Entwine data format. EPT is a “ simple

and flexible octree-based storage format for point cloud data” (Hobu, 2020). An octree is a hierar-

chical tree data structure in which each node has exactly eight children or non. To index a point

cloud with an octree, the 3D cubic boundary (root node) is divided into eight octants of which each

is further subdivided into octants until a certain threshold is met. Typically the threshold is defined

as the maximum depth or the number of points (Han, 2018). An example of an octree structure

can be seen in figure 3-2. The yellow boxes indicate the voxels at the different depths (levels). The

outermost yellow box is the root node.

Figure 3-2: Potree viewer of an example data set (https://potree.entwine.io). The yellow boxes indicate the
octree levels.

An EPT data set consists of metadata in JSON and the structured binary point data. A specific

description of the individual files can be seen in Hobu (2020). Entwine uses similar mechanisms as

3Point Cloud Library
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the ones applied in raster tiling schemes but extended to 3D. In raster tiling schemes, the coarse

resolution data is typically exchanged by higher resolute data when traversing its sub-tiles. EPT in

contrast can be understood as an additive scheme (Hobu, 2020). Rather than replacing data, it adds

data at a higher resolution. Octrees are generally popular for its “memory efficiency, query speed

and structural simplicity” (Han, 2018).

Potree

Potree (Schütz, 2016) is a web-based point cloud renderer that allows users to view large point

could data sets in a web browser. While raw point clouds are often converted into triangle models,

i.e. meshes, or two-dimensional images/grids for visualization purposes, Potree directly visualizes

the points. Based on a modifiable nested octree structure in the background, distant regions are

rendered at a lower level of detail. Additionally, points outside the field of view are culled. By this

means even large point clouds can be rendered at a fast speed. Potree itself is based on WebGL4

which is a JavaScript API for rendering high performance interactive graphics. Among others WebGL

takes advantage of hardware graphics acceleration, e.g. visualization processes can be offloaded

on a graphics card (MDN contributors, 2020). With WebGL, the distribution of 3D content over web

browsers has become increasingly popular. Especially as it allows to visualize content without the

need to install a third-party viewer. Potree is an application entirely on the client side. The server

only hosts files i.e. JavaScript configurations but does not execute any code. To use Potree, a point

cloud first has to be converted to the octree structure. While Potree directly offers a converter, called

PotreeConverter, also an Entwine EPT data set can be used to provide the structure as it is itself

a octree-based storage format. This data set is then locally served and the Potree configuration

fetched from the Potree server by opening the special Potree URL which allows to take the localhost

URL. The Potree user interface can be seen in figure 3-3.

Figure 3-3: Potree viewer of an example data set from the search for the Malaysia Airlines Flight 370
(https://potree.entwine.io)

4Web Graphics Library
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On the sidebar (left side), Potree additionally provides tools for the exploitation of and measurements

in the point cloud. Among others, one can choose different measurement tools such as angle, point,

distance, height, area, volume etc. Also it is possible to clip specific areas of the point cloud and

change the visualization in terms of colorization, point size, etc.

3.2. Project structure

The aim of this thesis is to implement a project structure which enables an adaptive workflow in

Python. The workflow can be subdivided in three tasks:

1. Compute the bathymetry point cloud from the raw Kongsberg beam data (Bathymetry prepro-

cessing).

2. Use the bathymetry to georeference the raw backscatter time series (Backscatter preprocess-

ing).

3. Filter and correct the data to clean undesired data artifacts (Data filters and corrections).

The outlined tasks are approached based on the RV Sonne SO268-3 cruise data. The cruise

started on the 30/05/2019 in Vancouver, crossed the Northern Pacific westwards and ended at the

05/07/2019 in Singapore. During the cruise, the MBES has constantly been operated and the data

saved in Kongsberg raw data files (*.all) of 60 min duration. Underway, eight CTD measurements

were used to apply sound velocity corrections to the data. Before the first CTD station, synthetic

profiles were extracted from Sound Speed Manager (Kinne et al., 2019). The outlined tasks are

subdivided in individual steps as shown in appendix A. Starting with the raw Kongsberg EM 122

data, in a first step the needed datagrams have to be decoded. For this purpose, the pyall module

is used. Datagrams found to be of relevance are the (P) position datagram, the (X) XYZ datagram,

the (Y) seabed image datagram and the (R) runtime datagram.

Bathymetry preprocessing

Subsequently, the raw positions and depths are used to compute the bathymetric point cloud. Since

the Kongsberg datagrams are not synchronized, the latitude and longitude of the position data-

grams first need to be interpolated to ping time. Afterwards the MBES position at ping time and

the transducer depth are merged with the beam coordinates to transform them from the vessel to a

global geographic coordinate system (WGS 84). This transformation requires a solution to the direct

geodetic problem which is integrated in Python’s geographiclib (Karney, 2015). The final result of this

step and the first task is a bathymetric point cloud in geographic coordinates. The implementation is

described in section 3.3.

Backscatter preprocessing

To solve the second task, the raw seabed image data and the previously derived bathymetry are

required. The seabed image data contains time series of backscatter sample for each beam which

have to be georeferenced. Therefor the bottom detection sample of each series has to be identified

and associated with the corresponding sounding of the bathymetry. The other samples are then con-

catenated and interpolated between two adjacent bottom detections. The result of this step and the

second task is a dense point cloud attributed with the backscatter amplitudes. The implementation

is described in section 3.4.
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The data stored in the runtime datagram is from a processing point of view mainly interesting for

the backscatter data. Different survey settings can have a major impact on the radiometric level

itself but also on the geometric distribution of the samples along the swath. There are approaches

which thoroughly address the individual settings in an attempt to automatically adjust the backscatter

processing. However, since a radiometric correction is not implemented in this work, those settings

are mainly interesting to understand the data and potentially for future implementations. On the

other hand, the important settings for the georeferencing did not change throughout the cruise and

hence their impact could not be detected.

Data filters and corrections

The third task relies heavily on the strengths of Entwine, PDAL and Potree for both, the bathymetry

but also the backscatter processing. During the thesis, it was found that the data amount of point

clouds exceeds the capability of simple Python functions. For example, even finding the nearest

neighbor of a point becomes a lengthy task when working with unstructured point clouds on a point

by point basis. The combination of the above named libraries addresses exactly this need for efficient

point cloud handling. Entwine is a data organization library meant for massive as well as desktop-

scale point clouds. It can essentially index anything that is PDAL readable and it is completely

lossless in terms of points, metadata and precision. The Entwine EPT5 is an octree-based storage

format based on structured binary files in the ASPRS6 LAS format. It was found that PDAL point

cloud processing from EPTs is very fast compared to e.g. the same processing with ASCII files. In

the documentation of PDAL it is said that the PDAL EPT reader supports “spatially accelerated [...]

and file reconstruction queries” (PDAL Contributors, 2020). On the other hand, Entwine is suitable

for real-time rendering in Potree. Potree is a web-based point cloud viewer which, just as PDAL

and Entwine, emerged from endeavors of the LiDAR open source community. LiDAR typically does

not focus on hydrographic data (even though there are bathymetric LiDARs), therefore some of the

basic constructs do not work perfectly for the given data set and need workarounds which are not

the most elegant. For example, the predefined object classes in LAS and Potree include trees, street

furniture etc. which are not needed underwater. However, since LiDARs, just as MBES systems,

attempt to build models of real world features, there is a consent of what processing tools should be

capable of such as outlier filtering. Also, all the tools have the general flexibility to be adjusted to the

user/developer needs. They can be tailored to the personal demands, if it is considered worth the

work it takes to get into the various components involved in the process.

The bathymetry and backscatter data is converted to the Entwine format. As PDAL works in units

of the data coordinate system, the point clouds have to be projected to UTM. Subsequent filters and

corrections for data cleaning are then applied in PDAL using Potree as supervision tool. Thereby

the Python extension of PDAL is planned to be used to conduct the processing. For the bathymetry

cleaning, a fixed sequence of filters is applied to the data. A Jupyter Notebook is used to substitute

the individual filter parameters to the data. The suitability of the parameter settings can be verified

in Potree. Once the bathymetry has been sufficiently cleaned, it can be exported as an ASCII

point cloud or in gridded form. The backscatter processing approach is structured similarly. The

corrections are also parameterized in the notebook and then exported to ASCII or grids.

5Entwine Point Tiles
6American Society for Photogrammetry and Remote Sensing
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3.3. Bathymetry processing workflow

For each beam in a XYZ datagram there are Cartesian vessel coordinates x, y, z given which are

vertically referenced to the MBES transmit transducer and horizontally to the active position system’s

location. The test data set contains position data from two systems which are specified by the 8 bit

descriptor field:

11xx xx11 The first to digits indicate that the position system is active, using the input datagram

time and the last two that the input data came from position system number 3.

xxxx xx01 The last two digits indicate that the input datagram came from position system num-

ber 1.

That means although both position systems are sending data to the MBES system, the beam data

is only referenced to system 3. Figure 3-4 shows a section of the position data of both systems

with the same start- and end-time, whereby the ship proceeds from the lower right to the upper

left corner. While the forms of the respective tracks correspond, there is a constant spatial offset

whereby position system 1 is further ahead.
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Position system 1
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Figure 3-4: Spatial offset between position system 3 (active) and 1

And indeed, the installation parameters of the two position systems (Tab. 3-1) show that the location

of position system 3 coincides with the origin of vessel coordinate system whereas the additional

position system is horizontally located roughly 35.1 m further to the bow of the ship and ca. 2.6 m to

the port side.

Inspecting the position data itself, it can be seen that the data from system 1 and 3 arrive in an

alternating sequence whereby two subsequent datagrams share the same position counter. Mean-

ing that after each system 1 position datagram, there follows a system 3 datagram with the same

position counter. The time difference between a 1-3 datagram sequence (with the same position

counter) is 311 ms and it repeats after 189 ms.

As the MBES data is referenced solely to the location of the active positioning system, the data of the

other system can not directly be used. A straightforward approach to solve the ambiguity is to use
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Table 3-1: Installation parameters of position systems

System 1 System 2 System 3 (active)

Quality check on on on
Motion compensation on off off
Time stamp used input datagram system input datagram
Vertical location −15.604 m 0.000 m 0.000 m
Along location 35.119 m 0.000 m 0.000 m
Athwart location −2.607 m 0.000 m 0.000 m
Time delay 0.000 s 0.000 s 0.000 s
Geodetic datum WGS 84 WGS 84 WGS 84

data from the active positioning system only. When skipping the system 1 data, the measurement

frequency of system 3 would still be 2 Hz, and hence, the maximum time lag possible between a

depth and position datagram would be 0.25 s. Usually the depth measurement frequency is much

lower as sound can only travel ca. 375 m through water in the same time which corresponds to a

depth of 187.5 m (actually less, since the outer beams have a longer way due to the swath geometry).

Typically it would be even less through hardware induced time delays. For the section of test data

with a mean depth of roughly 5,000 m and 24 s per measurement (for a dual swath to repeat), the

position measurement frequency would be sufficient. Though it has to be kept in mind for shallow

water systems.

To allow a generalized distinction of position data from the active and potential other position sys-

tems, the 8 bit descriptor needs to be utilized. As shown above, it mainly indicates the source

position system number of the datagram and for the active system also which time has been used.

But regardless of the system number and time, the first digit of the code has to be 1 for the active

position system. Thus, in order to identify whether a datagram comes from the active system, only

the first digit of the descriptor needs to be checked. Or if decimal numbers are used instead, the

number has to be > 128 as all higher numbers will definitely start with a 1 when converted back to

binary.

3.3.1. Interpolation of positions to ping time

Another complication when working with Kongsberg MBES data is that the sensors and hence their

data are asynchronous. At ping time of the MBES transmit transducer there is (probably) no instan-

taneous position measurement available. Therefore, after filtering the position datagrams for the

active system data only, the positions need to be estimated at MBES ping time. For this purpose,

latitude and longitude are independently interpolated as functions of position datagram time and

then estimated at XYZ datagram time. In an attempt to do so, it turned out that for all of the 670 files

of the test data set, the position datagrams started with a time lag of on average 20 s compared to

the XYZ datagrams. Likewise, the time lag at the end of each file was on average 40 s. As the posi-

tion descriptor states, the timestamp of the position datagrams was taken from the input datagrams.

The general MBES system time, following the system clock information given in the installation in-

formation, had as clock source the NMEA ZDA format datagram and a 1 PPS clock synchronization

using the rising edge detect was turned on. Following Kongsberg (2018), those are suitable settings

when the timestamp supplied in the position input datagrams is used. This suggests that the time

31



Methodology

lag did not arise from an actual delay of the position and MBES sensor but is rather caused by how

the data is fed into the data file. At a later point it was found that this is a typical phenomenon of

Kongsberg deep water echo sounders. Consequentially, following challenges arise which the choice

of the interpolation method has to take into account:

How to handle data at the beginning and end of a file?

How to handle potential position data gaps?

Actually both questions are insofar associated, as the time lag at the beginning of a file can cause an

artificial data gap. It is difficult to find a universal solution as the reasons for time gaps are various.

For example the position sensor could have a temporal malfunction or its data transmission is inter-

rupted, or the different sensors have time lags which cause systematic deviations. Generally, one

should be careful to directly interpolate large numbers of consecutive ping positions as it indicates

a somewhat larger data gap. Therefore, an interpolation limit is introduced which restricts the max-

imum number of positions that are interpolated between to position measurements. For dual swath

system as the Kongsberg EM 122 used for the test data set, the value should not be lower than 2

as the two swathes of a ping are received in a very short period of time and thus the limit would be

reached with almost every ping. If the source of the data gap is known and rated as ‘non-critical’, the

limit can manually be raised. To handle systematic effects arising from actual time lags between the

position sensor and MBES system, it should also be possible to apply a manual time offset (positive

or negative) to the position data before the data is interpolated to ping time.

3.3.2. Determination of sounding positions

After the interpolation of positions to ping time, the successive task is to combine the position and

MBES (beam) data to determine latitude ϕ, longitude λ and depth from the waterline of each sound-

ing. For that purpose the XYZ transducer depth at ping time has to be added to each beam depth

z, and the horizontal coordinates x, y of each beam have to be transformed from the local Cartesian

vessel to the global geographic system. The latter requires a solution to the direct geodetic problem

which deals with the determination of the geographic position of a point by using the distance and

azimuth starting from the position of an initial point. On an ellipsoid (as the GNSS reference ellipsoid

WGS 84) the shortest distance between two points is a geodesic. However, a common approxima-

tion for such kind of navigational problem is the combination of local flat and ellipsoidal or spherical

calculations. In a first step, ranges, bearings and/or courses are converted to ∆X and ∆Y increments

in a local rectangular coordinate system with the y-axis pointing north. Afterwards, ∆X and ∆Y are

converted to geographic coordinate increments ∆ϕ and ∆λ on the reference ellipsoid. These can

then be added to the geographic coordinates ϕ and λ of the initial point (Lenart, 2011). While this

approach is a computationally efficient method, the distortion caused by the approximations was

strongly visible as artifacts in the bathymetric data which was significantly skewed. An often used

solution which uses accurate geodesic calculations is Vincenty’s formula. It is an iterative method

which is meant to cover the entire range from very short geodesics in the centimeter range up to

20,000 m with a reasonable computational effort. Inaccuracies were found to be in the millimeter

range (Vincenty, 1975).

To transform the vessel coordinates to geographic coordinates, Vincenty’s formula is applied to each

beam in the swath. The interpolated MBES position at ping time is used as starting position for the
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direct geodetic problem. Subsequently, the distance and azimuth to each beam of the swath are

calculated. Thereby, the distance can be computed by applying Pythagoras’s theorem to the x, y

beam coordinates. The azimuth is calculated by adding the atan2 function of y and x to the heading

of the swath. Together, the MBES position and the distance and azimuth of each beam can be

inserted in Vincenty’s formula to determine the geographic coordinates of the swath.

3.4. Backscatter processing workflow

As described earlier, the Kongsberg beam time series data is formed in a way that the sample sets

of each beam form together a continuous trace along the seafloor when concatenated. This im-

plies that samples overlapping at the edges of two beams are already resolved. The two generic

approaches to georeference the samples are either to georeference the corresponding sample of

each beam with the bottom detection and then interpolate the others or secondly, to transform the

data into half-swath times series and proceed with the data as such. In Schimel et al. (2018) it

is recommended to use the second approach for this type of continuous beam time series data.

Following e.g. the methodology of Beaudoin et al. (2002), an across-track array is formed (with the

desired spatial resolution) and then filled with the according two way travel times of the correspond-

ing beams. The time index is subsequently used to populate the array with the amplitude samples.

This approach was initially used by the OMG7 software library to process data from Atlas systems

and was then modified by Beaudoin et al. (2002) to adapt SeaBat data. However, due to the form

in which Kongsberg provides the seabed image data, the first approach seems to be more obvious

as there is no two-way-travel-time available but the center sample number. To asses the feasibility,

following information should be acquired:

1. How to find the amplitude sample corresponding to the bottom detection?

2. How are the samples spatially distributed within the beam?

3. How are XYZ and seabed image data associated?

4. How are beams handled without a valid bottom detection?

In Kongsberg (2018) the structure of the seabed image datagram and some supplementary infor-

mation is described. For each beam, there is a center sample number given which corresponds to

the detection point of the beam. When inspecting an arbitrary file of the test data set, it can be seen

that the center sample number does not necessarily correspond to the actual center of the sample

series in a sense that it coincides with half the number of samples per beam.

Hammerstad (2000) describes that the continuous set of samples along the bottom is spaced in

fixed intervals according to the range sampling rate of the MBES and the mode it is used in. It

should be possible to derive both parameters from the information given in the runtime datagram.

The mode logged in the runtime datagram was changed a couple of times throughout the acquisition

of the test data set (Tab. 3-2). It generally describes different settings for the dual swath mode, the

TX pulse form and the ping/depth mode of which all are meant to optimize the measurement for the

local water depth.

The dual swath mode is meant to increase the along track resolution in deeper waters by trans-

mitting two swathes per ping whereby the transmit beams are slightly tilted in along-track direction.

7Ocean Mapping Group of the University of New Brunswick
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Table 3-2: Different modes used in the test data set.

Dual swath mode TX pulse form Ping mode

dynamic CW medium
off CW deep

dynamic CW deep
off mixed deep

dynamic mixed deep

However, it is only available in waters deeper than 50 m to ensure enough separation between TX

pulses (Kongsberg, 2011). In dynamic (dual swath) mode, the tilt angle between the two swathes

is automatically determined based on vessel speed, ping rate and depth in the attempt to provide

a uniform along-track resolution (Kongsberg, 2019). The TX pulse form is meant to extend range

where required by water depth. The two available pulse forms are either continuous wave (CW) or

frequency modulated (FM) chirp. There is also a combined mode, where the outer transmit sectors

use a significantly longer FM chirp to optimize the signal-to-noise ratio. However, those modes do

not seem to have an impact on how the amplitude samples are distributed in across-track direction.

During acquisition of the test data set, the beam spacing was constantly set to high density equidis-

tant which is essentially a signal processing technique applied to control the effective acoustic foot-

print and keep it constant for all soundings derived from phase detections (Kongsberg, 2011). In

fact, this is valid for almost all soundings except a few at normal incidence which are usually de-

tected by amplitude. Figure 3-5 shows the average distances determined based on x, y (2D) and

x, y, z (3D) differences of adjacent beams along the swath. When comparing the 2D and 3D plots,

the former seems to fit better to the above described spatial spacing of the footprints. Around the

center beams, the distances are shorter with higher standard deviations which could be caused by

the amplitude detection. Also on the outer beams, the standard deviation gets worse.

Figure 3-6 shows the average number of amplitude samples grouped by their corresponding beam

index. It can be seen that the number of samples per beam increases the further outside a beam is.

For the two utmost beams at port and starboard side, the values suddenly rise to values above 900

samples. When considering that the effective acoustic footprint for most of the beams is processed

to be constant, it would actually imply that the sample density increases towards the outer beams.

Though as mentioned above, the center sample number does not always correspond to half the

number of samples per swath and this could actually be the reason, why the samples are spaced

equally, despite the increasing number of samples per beam. While the effective beam footprint

is processed to be constant, the actual beam form is very likely still equiangular according to the

RX beam width. That is why the actual (across-track) footprint increases and hence the number of

equally spaced samples. Consequently, when matching the amplitude samples which spatially co-

incide with the (real) equi-angular footprint and the (effective) equidistant sounding/detection points,

the bottom detection sample would relatively move to a position closer to the swath center, the

further outside a beam is.

XYZ and seabed image datagrams belonging to the same ping/swath are associated by a common

sequential ping counter. In both datagrams, there is data given for each beam of the swath including
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Figure 3-5: Average 2D and 3D distances between adjacent beams based on an arbitrary file (upper figure)
and the corresponding standard deviation STD (lower figure).
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Figure 3-6: Bar plot of average number of sample amplitudes per beam along the beam index. For the outer
beams at beam index -161 and 161 the values are rounded 993 and 987.
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beams lacking valid detection, and hence, the respective beams in the different datagrams can be

allocated by generating a beam index. For the 100,260,288 beams in the entire data set, following

detection types were found:

85.87 % valid phase detections

7.90 % valid amplitude detections

6.23 % invalid but inter-/extrapolated from neighbor detections

For the latter type there is no bottom detection available, even though a center sample number

is provided. Therefore, no special care has to be taken for beams with an invalid detection when

georeferencing the bottom detection samples. The beam samples time series themselves are sorted

differently depending on what side of the swath they are. The sorting direction is provided and

indicates whether the first value in a series has the lowest or furthest range (Kongsberg, 2018).

Considering the above findings, following backscatter georeferencing procedure is developed:

1. Associate processed bathymetry and raw seabed image swaths and beams using the ping

counter and beam index.

2. Georeference the sample of each beam time series which corresponds to the bottom detection.

3. Concatenate the samples between to adjacent bottom detection samples.

4. Interpolate the newly formed sample time series by equally spacing the latitude and longitude

(and depth, eben though it was found to not be of relevance for the equidistant sample spacing)

differences according to the number of samples.

5. The two sample series outside the outermost beams are not georeferenced as there is no

justified assumption on how the bathymetry continues.

3.5. Visualization of bathymetry and backscatter data

Potree (Schütz, 2016) is a web based point cloud renderer which can directly visualize EPTs. This

has the big advantage, that one can share a point cloud data set without the need to install any third-

party software. However, Potree was not the first attempt for the data visualization. Python itself

comes with some more or less static visualization tools. It was whatsoever found that interactivity

of the visualization is crucial to inspect any data processing result. Therefore an alternative to the

classic matplotlib of Python was searched. Project Jupyter itself offers some interactive plotting

capabilities such as ipyvolume. Ipyvolume is specifically designated to 3D point data and may be

seen as the equivalent of imshow extended to the third dimension. While ipyvolume works well in

Jupyter Notebook and can be easily integrated with ipywidgets, it was in the first place designed

to work with arrays stored in the working memory (RAM). Thus this approach quickly reached its

limit due to the large amount of data. Finally, Potree solved both the interactivity as well as the

performance issues of the previous approaches.

Since it is web-based just as Jupyter Notebook, the integration of Potree in a notebook can be

achieved with a simple iFrame (inlineframe) which is a HTML object that can be embedded in a fixed

frame on an existing website. A typical example of an iFrame object is a YouTube video embedded

in another website. To initialize Potree, a HTTP server has to be started in the directory of the EPTs.

In the Entwine documentation the NodeJS http-server is used to serve the data to the remote Potree

page. In Python the http-server can be started as a subprocess which can be terminated once the
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data has been delivered. It was noticed that when the subprocess was canceled before the data was

fully transmitted and the Potree page loaded, the higher level nodes containing the high resolution

data were missing for some EPT tiles (Fig. 3-7).

Figure 3-7: Resolution issues of individual EPT tiles which appeared when the server was canceled to early.

While the two ‘hills’ on the right side of the image are fully loaded at the scale, the major part lacks

that resolution level. To avoid that, a timer was set in place which delayed the termination of the

HTTP server for a couple of seconds. Another issue (which was at least noticed under Windows 10

using the Firefox Browser) was that the Potree viewer did not update even though an updated EPT

data set was provided. While it at first seemed to be an issue of the NodeJS http-server, it was later

found that the phenomenon is simply caused by the browser cache. The problem can be solved by

changing the browser cache configuration. Alternatively it could be tested if another server (such as

live-server) behaves differently.

The specifications of the data to be visualized in Potree are strongly influenced by the LiDAR require-

ments and standards. In first attempts of integrating Potree, the default decimal precision imposed

issues as it was set to 2. With the point cloud data in geographic coordinates it resulted in a pattern

which can be seen in figure 3-8.

Figure 3-8: Point cloud is pressed together due to an insufficient decimal precision.

The point cloud appeared as if it was pressed together. This pattern was simply caused by the effect

that small scale differences in geographic coordinates are only noticeable at later decimal places

than the second. There are two possibilities where the decimal precision could have been lost:
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During the Entwine build in the conversion from ASCII to EPT or in the Potree Viewer itself. In its

build command, Entwine offers to set the scale of the data which defines how many decimal places

are preserved. Alternatively, the absolute parameter can be set to true. While scaled values with a

fixed precision are preferred, the absolute parameter defines double-precision values for x, y, and z

instead. With both options, the LAS files in the EPT octree preserved the defined or initial precision

so that the issue was actually caused by the Potree configuration. While Potree can generally be

configured, it would diminish the simplicity of using a remote server without the requirement to keep

any customized code locally. Also it was found that the use of metrical coordinates such as projected

UTM coordinates provides significant advantages for subsequent processing stages. Therefore it

was decided to project the geographic coordinates to the suitable UTM zone (determined on the

northwestern extent of a data set). For the projected metrical coordinates, the decimal precision

was found to be suitable.

Challenges were generally faced with the data types of the bathymetry and backscatter attributes.

Potree is intrinsically bound to the LiDAR attributes, e.g. point clouds can be colored by RGB,

elevation, intensity, classification etc., most of which are useful in a hydrographic context as well.

Thereby Potree expects attributes to be formatted in a specific way in order to detect and visualize

them. In PDAL and Entwine the point attributes are expressed as dimensions. Dimensions are

thereby a construct used to structure the point data. All points are defined by a set of dimensions,

the most basic being the x, y and z coordinates. As Entwine uses PDAL readers for data input

and conversion, the required configuration information generally relates to PDAL. A PDAL reader

(stage) attempts to automatically detect a known dimension if the header infers it. To represent the

backscatter amplitudes, a suitable dimension has to be found. Unfortunately, there was no perfect

match available. Generally, there are two potential options of which both have their advantages but

also respective drawbacks: Firstly, the intensity dimension could be used. The expected data type

of intensity is an unsigned 16 bit integer which corresponds to a range from 0 to 65,535. However,

the backscatter data is usually negative as it represents the relation of the intensity backscattered

at a target to the incident intensity and therefore it requires a signed representation. When passing

negative values to the PDAL reader, the backscatter intensity is whatsoever not shown in Potree. At

this point it is not sure where exactly this loss occurs. It was observed, that the backscatter values

are stored as double if the header is changed, so that the data is stored in a custom dimension.

Though, Potree does not recognize it as intensity then. If the header is changed to ‘Intensity’ the

data is stored as unsigned 16 bit integer, so that the values cannot be negative. This seems to cause

an internal invalidation, because the points are not shown then. Generally, Entwine itself provides

the possibility to set the schema in which the dimensions are stored. When passing a suitable data

type (signed 16 bit integer), the points do not appear either. Hence, in order to show the backscatter

values as attributes in Potree, it would be required to convert the data type to a representation

which is technically incorrect. For following processing this is highly prone to failure. The second

option is to use the amplitude dimensions. The amplitude dimension in PDAL is stored as float and

can therefore represent the true backscatter values. However, one sacrifices the representation of

backscatter in Potree since it does not (by default) support amplitude attributes. As the x, y, z points

are still visualized in Potree, it was decided to use the amplitude dimension for the backscatter

samples and prioritize on the technically correct representation.
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3.6. Filters and corrections

The implementation of the bathymetry filters and backscatter corrections is founded on PDAL’s

pipeline concept. A pipeline basically consists of a data ‘reader’ stage which handles the data

input, one or more ‘filter’ stages which process the point cloud and a ‘writer’ stage in order to gen-

erate the desired output. PDAL pipelines are formulated as JSON arrays or objects (depending

on the syntax applied). Their use for data processing has two significant advantages: Firstly, they

provide simultaneous record of how the data was processed, which is, considering the IHO (2008)

processing guidelines, an important step when working with hydrographic data. Secondly, they allow

to define a suitable processing structure which can be individually adjusted to the requirements on

a parameter basis. This is because one can predefine a pipeline in the JSON array, while on the

other hand the specific parameters of each stage can be individually substituted to fit the applica-

tion. For this purpose PDAL provides among others its Python extension. Since Python itself has an

interface to JSON objects with the json library, a pipeline can be build and adjusted in Python and

then executed via the extension in PDAL. In this sense, PDAL can be seen as the data format and

processing handler which is optimized to handle large point cloud data and Python is used as the

pipeline constructor and initiator. Thereby the JSON pipelines are build in Jupyter Notebook using

widgets instead of plane Python. Widgets are simultaneously very useful but also restrictive. It is

very convenient to provide a clean interface to the user so that no parts of the raw Python code are

touched which could cause unwanted and/or uncontrolled behavior. However, it is vital for the func-

tionality that the widgets do not restrain the use of a pipeline. A basic example is an integer slider

with an inappropriate range. While a simple remedy would be to only use integer text boxes, it was

simultaneously found to be quite prudent to restrict behavior which could actually cause malfunction.

It is therefore a trade off to restrict as much behavior as necessary, while allowing the user to have as

much flexibility as possible. Another aspect is that a user who does not know the suitable settings

for its data can be guided by provision of starting values for the pipeline, which were found to be

useful for similar kinds of data. For MBES data, the major difference between data sets is caused

by depth and bathymetry. The initial idea was to introduce depth classes i.e. shallow, medium and

deep water pipeline configurations of which the user can choose. According to the set depth class,

the default values are adjusted. While this is a very convenient solution for the user, it becomes

confusing when programming the widgets. To implement such an approach, a more comprehensive

widget management would be needed.

The pipelines itself are build up starting with the PDAL EPT reader. It simply requires the path to

the ept.json file of the EPT data set. That file includes the “core metadata required to interpret the

contents of an EPT dataset” (Hobu, 2020). This includes the data set bounds, the data and hierarchy

type, the number of points, the schema, the span of voxels in each spatial dimension, the spatial

reference system and the version. The EPT reader provides all stored dimensions to the pipeline.

The next section of the pipeline are PDAL’s filters which operate on that data. Generally, they “can

remove, modify, reorganize, and add points to the data stream as it goes by” (Bell et al., 2020).

The result of those modifications is then in the last pipeline stage written to the desired output. For

example when classifying outliers as for the bathymetry cleaning, the result of the filter stage(s) is the

point cloud itself with a new or modifies dimension ‘Classification’. While PDAL does not provide an

EPT writer which updates the input EPT directly, it does have an EPT addon writer which supports
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writing additional dimensions to an EPT data set. However, those add on dimensions are stored

separately from the original EPT data set. On the one hand this is thorough since the raw data is not

altered, though it comes with the drawback that Potree does not visualize them. In order to visualize

any modifications to the data, the EPT needs to be updated, the HTTP server has to be initiated

again and then Potree can be updated to show the processing result. A workaround found to update

the EPTs is to use an intermediate file from which the EPT is build again. It is insofar redundant as

the entire hierarchy has to be build again, but it enables the data visualization. Also it was found that

the use of a temporary BPF (Binary Point File) file provides the capability to rapidly update the EPT.

3.6.1. Bathymetry filters

For the bathymetry filtering pipeline, three PDAL noise classification filters are used: The extended

local minimum filter, the radius outlier filter and the statistical outlier filter. The individual filters are

described and tested in the sections below according to their order in the pipeline. Additionally it

was found to be helpful to have a depth window filter that allows to define a min and a max depth.

Points outside this window are rejected. Therefor PDAL’s assign function is used. It simply assigns

a defined classification value to points where a certain criterion (where Z > min depth or Z < max

depth) is met. As recommended by IHO (2008), points which are suspicious should not be deleted

but instead flagged with an appropriate indication. Thereby flags which were applied automatically

instead of manually, e.g. by a filter, should be carefully verified by a hydrographer. To meet this cri-

teria, a discard-continue-apply cycle is introduced which is meant to iterate the bathymetry cleaning

until the hydrographer is satisfied.

The cycle starts with the bathymetry data whether it has already been classified previously or not.

Thenceforth the PDAL filter pipeline is configured: The user can decide what filters to turn on or off

and adjust the respective filter parameters using the provided widgets. Afterwards the pipeline is

run through Python. Initially, the PDAL Python extension was used for this step. In this connection

however, the extension unfortunately has a bug (the bug was already reported). The ‘where’ clause

of the filter stage, which is used to define what points should be considered during the filter, does

not work properly through the extension. In order to only consider points which are at this point

unclassified, the where clause is required. Therefore this pipeline has to be invoked in a Python

subprocess instead. Afterwards, in order to visualize the result, the EPTs are updated and the data

is shown in Potree. In the first place, the classification was limited to the two classes ‘never classified’

and ‘low point (noise)’. The latter is the default classification of all PDAL noise classification filters

and corresponds to a classification value of 7. However, it was found to be interesting to understand

which point was classified by what filter stage in order to allow a more precise parameter adjustment.

As an instance, if the filter pipeline flagged too many points, it is beneficial to know what exact filter

was too aggressive and should be reduced. Hence, the individual filters were each assigned different

classification values. Unfortunately, those classifications are again predefined based on the LiDAR

requirements. In the LAS specification (ASPRS, 2018), the point classification values and their

meaning are outlined. Potree follows those specification and innately uses them when interpreting

the delivered classification dimension. In a hydrographic context, those classes such as vegetation,

building etc. are not applicable. Generally, the specification reserves a defined range of value for

customized classes. Though again, the default Potree version does not account for them. As before,

the workaround found to be comparably convenient is to reinterpret the classes known by Potree
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and accept that the label does not fit perfectly.

After the outlier classification state, the hydrographer can decide whether to discard or keep the

classification. To discard the classification, a checkbox ‘Reject any classification’ is provided. It

should be enabled prior to the next iteration in order to ignore any previously defined classes and

treat all points as if they were never classified. If the classification is accepted, the hydrographer

can decide whether to continue with another iteration. Then, the filters of the pipeline are set to

ignore points which are already classified and solely filter the others. Compared to discarding the

classification which is necessary if it was too strong, it can be effective to continue the classification

rather than restarting it. For example, if certain outlier patterns are caught better if the default order

of filters is changed. Finally, the iteration ends once the operator is satisfied. The result is a point

cloud with the rejected outliers being classified accordingly. The outliers can then be set to ‘ignore’

in the export of the cleaned bathymetry.

3.6.1.1. Extended local minimum filter

The extended local minimum (ELM) filter is implemented in PDAL based on the method described in

Chen et al. (2012). It is meant to only discard points as noise which are considered low with respect

to their neighbors. Basis for this is a raster of the point cloud. Within each cell of the raster, the

lowest point is marked as noise, if the second lowest point lies more than a given threshold λ higher

(Fig. 3-9).

Figure 3-9: Schematic representation of ELM filter (Chen et al., 2012)

If the lowest point is discarded, the previously second lowest point is considered and the procedure

repeated. This is done until the current lowest point lies within the threshold. Then the iteration

is stopped and the next raster cell is inspected for outliers. For the lowest point in the raster cell

outlierlowest, one may formulate:

outlierlowest =

true, if the height difference to second lowest point > λ

false, if the height difference to second lowest point < λ
(3-1)

In PDAL the ELM filter can be adjusted to the given data by choosing a suitable raster cell size

(default 10.0) and a threshold value below which points are identified as noise (default 1.0). Values

are always given in coordinate units (PDAL Contributors, 2020). It comes in valuable for bathymetric

data insofar as significantly low points typically have a high probability of being blunders since they

cannot represent any objects in the water column. Hence when using the ELM filter, there is a low

risk of rejecting outliers which actually represent real features. Also, the ELM filter, if applied properly,

provides a good basis for successive filters by rejecting doubtless blunders which consequently
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cannot disturb downstream filter stages anymore. Regarding the error types detected in the test

data set, especially the deeper lying soundings around the nadir beam could be addressed with the

ELM filter.

Figure 3-10: Center section of across track profile (with metrical axes) created with the Potree height profile
measurement tool. The descriptive data relates to the colored ball.

As figure 3-10 shows, those soundings are essentially separated from the seafloor and violate the

hypothesis of a smooth and continuous seafloor. To see how the ELM filter generally behaves, it is

tested on a small data subset. Figure 3-11 shows some measurements of along- and across track

distances of neighboring soundings within the data set. Very roughly, the along-track distance at a

water depth of 3,500 m is 80 m and the across-track distance is 40 m.

Figure 3-11: Along- (vertical) and across (horizontal) distances measured using the Potree distance measure-
ment tool and a single point measurement.

In order to have a sufficient number of soundings per raster cell, an initial raster cell size of 200 m is

passed to the ELM filter. To determine a suitable value for the threshold, some height measurements

are taken at the steepest slope of the data set (Fig. 3-12). No regular height differences exceeding

20 m were detected, and thus, it is set as threshold.

From 689,904 soundings in the data, the applied ELM filter classified 868 as low outliers which
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Figure 3-12: Height differences measured using the Potree height measurement tool.

corresponds to 0.13 %. At first sight, the result looks promising. In figure 3-13 a it can be seen,

that some false outliers were detected along the left slope. The right slope was facing away from

the MBES so that it was shadowed by the mountain. The soundings are most probably interpolated

and sparser. Under those circumstances the number of soundings per raster cell decreases, limiting

the overall number of soundings considered by the algorithm. Figure 3-13 b shows a view of rather

flat data in along-track direction. Most of the outliers were detected around the center beam and

in the outermost beams. This pattern is insofar typical for bathymetric data, and thus the result

plausible, as the accuracy of the outer beams is worse than towards the center. The center outliers

were indeed detected by the algorithm. However as figure 3-13 c shows, especially outliers which

appeared in groups decreased the filter result.

(a) Section showing half of the swath from inner beams on the left to outer beams on the right.

(b) Section showing part of the data in along-track direction.

(c) Section showing part of the data in across-track direction.

Figure 3-13: Result of ELM filter (cell size: 200 m and threshold: 20 m). Classified outliers are colored pink.

Altogether, the ELM filter seems suitable for bathymetry processing and a good choice as initial

filtering stage. When choosing the parameters, the depth is determining for the raster cell size

because it decides how dense the soundings are. If a rough bathymetry is expected, it should

not be set too large to avoid strong smoothing effects. Thereby it should be chosen in a way that
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enough soundings are within a raster cell without covering too large areas. The threshold is mainly

determined by the maximum expected slope. The steeper it is, the smaller the threshold should

be since otherwise the algorithms takes out soundings at the deeper edge of the raster cell. The

soundings which are rejected in the ELM filtering stage are assigned a classification value of 7 which

corresponds to the LAS class ‘Low point (noise)’ (ASPRS, 2018).

3.6.1.2. Radius outlier filter

PDAL implements an outlier filter inspired by the algorithm described in Rusu, Marton, et al. (2008).

The radius method of the outlier filter requires one pass through the point cloud. For each point Pi it

counts the number of points ki within a defined radius r. A point is discarded as outlier if ki is smaller

than a minimum number of neighbors kmin (PDAL Contributors, 2020).

outlieri =

true, ifki < kmin

false, otherwise
(3-2)

The radius outlier filter can be adjusted using the radius (default 1.0) and the minimum number of

neighbors (default 2). It was found to be very suitable for the detection of both isolated outliers as

well as outliers which appear in groups but in a structured way i.e. not as dense clusters. Based on

the previous measurements, the parameters were set to a radius of 150 m and a minimum number

of neighbors of 5. The result can be seen in figure 3-14.

(a) Section showing the edge of a survey line.

(b) Section showing the data from below along the sailing direction.

Figure 3-14: Result of radius outlier filter (radius: 150 m and kmin: 5). Classified outliers are colored light blue.

The radius outlier filter rejected 0.6 % of the soundings. Regarding the usual amount of soundings
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which are rejected (following Le Deunf et al. (2020) estimated percentage of outliers in hydrographic

data lies between less than 1 % up to 25 %), the filter was set proportionally rather weak. Figure

3-14 a shows the same mountain that has previously been shown. Again, a lot of the interpolated

soundings were rejected. Also the outer beams have a tendency to be filtered out. This can also be

seen in figure 3-14 b. The light blue spot in the center of the swath was one of the remaining outlier

groups after the ELM filter.

Altogether, the radius outlier filter is based on a very clear outlier definition: A point which has only

very little near neighbors. However, it could be seen that this is comparably also valid for e.g. the

outer beams. When the filter is adjusted to the given data set, it seems to be capable of providing

a good outlier detection. The determining parameter of the filter is the sounding density. Thereby

the two strategies are either to use a proportionally small radius and a small kmin or a larger radius

and a larger kmin. The former seems to be better suitable for rougher bathymetry. The soundings

which are rejected in the radius outlier filtering stage are assigned a classification value of 4 which

corresponds to the LAS class ‘Medium Vegetation’ (ASPRS, 2018).

3.6.1.3. Statistical outlier filter

The statistical method of the outlier filter requires two passes trough the input point cloud. During

the first pass, a threshold value is determined based on global statistics which is then used in the

second pass to identify outliers. For the computation of the threshold value, the mean distance µi

of each point pi in the point cloud to its respective k nearest neighbors is computed. Afterwards the

global mean of distances µ and the global standard deviation σ are computed (PDAL Contributors,

2020):

µ =
1
N

N∑
i=1

µi (3-3)

σ =

√√√√ 1
N – 1

N∑
i=1

(µi – µ)2 (3-4)

The threshold value t is calculated allowing the user to set a specific multiplier m (PDAL Contributors,

2020):

t = µ + mσ (3-5)

In the second pass, the statistical outlier filter iterates over the pre-computed µi values and discards

them if the value exceeds the threshold. PDAL Contributors (2020) formulate it as:

outlieri =

true, ifµi >= t

false, otherwise
(3-6)

The statistical outlier filter can be adjusted using the multiplier of the standard deviation threshold

(default 2.0) and the mean number of neighbors (default 8). Compared to the previous two filters,
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the statistical is the only filter which considers global statistics and does not require any absolute

distance declaration. During testing it was found that it reacts quite stable i.e. it is a rather robust

method. A suitable setting found for the test data set, was a mean k value of 20 and a multiplier of

2.5. the result can be seen in figure 3-15.

Figure 3-15: Result of statistical outlier filter (mean k: 20 and multiplier: 2.5). Classified outliers are colored
dark blue.

Once the coarser outliers are already rejected by the ELM and the radius outlier filter, the statistical

outlier filter seems to be proficient in detecting the remaining individual outliers which occur close

to the most probable seafloor surface. This is generally desired, however when the threshold is set

too low, it could indeed also falsely reject soundings representing small scale bathymetric features.

In this sense, the multiplier can be understood to accommodate the structural characteristics of the

bathymetry while the mean number of neighbors can be used to adjust the large scale structures.

The soundings which are rejected in the statistical outlier filtering stage are assigned a classification

value of 9 which corresponds to the LAS class ‘Water’ (ASPRS, 2018).

During the filter performance testing, the statistical outlier filter discarded 0.4 % of the soundings.

Altogether, the three filter stages rejected roughly 1 % of the soundings. Generally speaking, it

would still be reasonable to configure the filters stronger. The combined result of the three filters can

be seen in figure 3-16.

(a) Soundings that were rejected (pink: ELM filer, light blue: radius outlier filer and dark blue: statistical outlier
filer)

(b) Soundings that were not rejected i.e. accepted.

Figure 3-16: Combined result of ELM filter, radius outlier filter and statistical outlier filter.

Figure 3-16 a shows the soundings that were rejected and figure 3-16 b shows the soundings which

were accepted. The deeper lying soundings in the nadir area were removed satisfactorily. All in all,
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it seems appropriate that more soundings were discarded in the outer swath, as these beams are

typically less accurate. However, the outermost beams have a higher probability of being statistically

rejected, only because they lack neighbors on the outside. Also, the interpolated values are almost

completely rejected.

3.6.2. Backscatter corrections

As already mentioned, it is beyond the scope of this thesis to implement radiometric corrections. The

corrections which are to be implement are rather meant to fit the data set to a given level by adding

a constant offset or multiplier and visually enhance the final grid. As previously discussed, there

was no perfectly suitable dimension found to represent the backscatter. Of the options identified,

the dimension that is technically suitable but cannot be visualized in Potree was chosen instead

of changing the backscatter values for visualization purposes. This introduces the dilemma that

even though the points itself can be inspected in Potree, they cannot be colored according to their

backscatter amplitude. For now, the processed backscatter data has to be exported as grid and

then visualized externally. While working with the test data, the open source GIS software QGIS

was used for backscatter grid inspection. As it does not require a license, everybody can download

and use it. This was considered important as this thesis aims to enable accessibility.

The workflow of the backscatter processing is in principal the same as for the bathymetry processing.

A PDAL pipeline is build and then executed in Python. The Jupyter Notebook is again used to

parameterize the individual stages. During the bathymetry processing, the ‘Classification’ dimension

is (repetitively) adjusted but the bathymetry dimensions (‘X’, ‘Y’ and ‘Z’) remain unchanged. This is

the reason why the classification can be reset and started over. For the ‘Amplitude’ dimension

it is slightly different. The filters which accept parameters beyond the geometry work directly on

the dimension. When updating the EPT data set, the ‘Amplitude’ dimension is irreversibly altered.

Hence, the update-reset-accept cycle used in the bathymetry processing cannot directly be adapted.

At this time the backscatter results (grids) are inspected in an external software, and therefore, it was

chosen to directly use a writer stage, instead of updating the raw data set.

Regarding the planned corrections, altogether four stages have been investigated. The first is the

DEM filter. The DEM filter spatially culls points if they exceed a defined distance to a given raster.

As the bathymetry data is handled separately, this filter could theoretically be used to keep the

backscatter data in a reasonable distance to previously created bathymetry grid. Unfortunately,

the given combination of backscatter data and bathymetry grids caused an exception in different

tested combinations. The second correction being investigated is to add a constant offset value

or multiplier to the data set. This was considered helpful for situations where different sensors

with a varying backscatter level are used (as described by Schimel et al., (2015)). The mosaic

enhancement corrections which are commonly applied to backscatter data are despeckle and/or

antialiasing filters. For both a suitable PDAL filter could be identified. Despeckling is implemented

using the median absolute deviation and the antialisasing with the Poisson sampling filter.

3.6.2.1. Constant offset or multiplier

To manually alter a dimension in PDAL, the assign filter stage is provided. The assign filter requires

a defined syntax to express how the specific dimension is supposed to be altered. The following
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statement shows the syntax used to formulate an assign filter expression (Bell et al., 2020):

"Dimension = ValueExpression [WHERE ConditionalExpression)]"

Thereby the stated dimension is modified. The value expression defines how each value of the

dimension is modified and the conditional expression can be used to express what specific values

are modified. When applying this to the backscatter data, it could exemplarily be formulated:

"Amplitude = Amplitude ∗ 0.7"

"Amplitude = Amplitude – 20"

The first expression would multiply each backscatter amplitude value by 0.7 and the second state-

ment would remove −20 dB from each backscatter value. A conditional could as an instance be used

to apply the value expression only to a specific range of values.

"Amplitude = Amplitude – 20 WHERE OriginId = 0"

This statement only applies the value expression to amplitude values from the source file indicated

by the OriginID 0. The results of the previously constructed expressions can be seen in figure 3-17.

Thereby all grids are represented with the same gray scale.

(a) Raw data set.

(b) Data set times the multiplier 0.7.

(c) Data set minus a constant offset of 20 dB.

(d) Data set modified where OriginID = 0.

Figure 3-17: Backscatter grid multiplier/offset settings.
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3.6.2.2. Despeckling

The backscatter despeckling correction is meant to reduce the high-frequency noise in the backscat-

ter data in order to visually enhance the final mosaic (Schimel et al., 2018). In PDAL there are a

variety of filters available which cull a point cloud based on a specific criterion. For the despeck-

ling, it is important that the filter is not solely geometry based, such as the filters for the bathymetry

outlier/blunder cleaning used above, but considers the amplitude dimension of the data set. Filters

addressing specific dimensions are in PDAL accumulated under the umbrella term “conditional cull

filters” (Bell et al., 2020). Among others PDAL offers the interquatile range (IQR) filter and the me-

dian absolute deviation (MAD) filter. The former culls points which lie outside the defined interquartile

range (difference between the 25th and the 75th percentile) of a given dimension. The bounds can

be customized by a multiplier. The MAD filter culls points based on how points are distributed within

the defined dimension. Thereby the median absolute deviation is chosen as it is robust to outlier

in contrast to the mean and standard deviation. The MAD filter is described in Bell et al. (2020). It

uses the median absolute deviation to determine statistical outliers of the passed dimension. It is

the method recommended by Schimel et al. (2018) for the despeckling correction. The filter takes

essentially two parameters for its configuration: The dimension, which is set to ‘Amplitude’ when

working with backscatter data, and the number of deviations k from the median. k is used to scale

the strength of the MAD filter. To evaluate the effect of the MAD filter, it was applied to the same

data set with three different settings. The result can be seen in figure 3-18. The gray scale of all

grids were scaled to the maximum range of the grid with the largest range.

k = 5

(a) MAD with k = 5.

k = 3

(b) MAD with k = 3.

k = 1

(c) MAD with k = 1.

Figure 3-18: Backscatter grid with different MAD filter settings (the grids have an equal gray scale).

Generally, the median of the data set was estimated to −26.8 dB and the median absolute deviation

to 5.65 dB. The min and max values of the filtered points can be seen in table 3-3.

Table 3-3: Min and max amplitudes according to MAD filter settings.

k Min value Max value

5 −55.04 dB 1.44 dB

3 −43.74 dB −9.86 dB

1 −32.45 dB −21.15 dB
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From a visual point of view, the grid shown in figure 3-18 looks the best. It seems as if the darker

speckles in figure 3-18 a are almost fulls removed while not retouching the original structures. The

grid in figure 3-18 c already lost most of the structures which are still visible in figure 3-18 b.

3.6.2.3. Antialiasing

Aliasing patterns in form of distortion (staircase) artifacts often appear when high-resolution data is

represented at a much lower resolution. To reduce aliasing, it can be helpful to downsample the

backscatter data prior to the mosaicing to a similar resolution. Also for this processing step, PDAL

offers some suitable filters. The most basic resampling filter is the decimation filter, which simply

culls every n-th point. However, this procedure acts randomly which may potentially be misleading

depending on the point sorting. Another filter which could be utilized for downsampling is the sample

filter which performs Poisson sampling. The algorithm culls all points within a given radius of the

points to be kept (Bell et al., 2020). In contrast to the other filter it already assures that the retained

points are spatially distributed with equal distances. Though, the other samples are simply culled

and will thus be completely ignored in the final mosaic. To assess how this will (at least visually)

impact the final grid, again a test data set is downsampled with different settings. The result can be

seen in figure 3-19. The gray scale of all grids were just as previously scaled to the maximum range

of the grid with the largest range. All grids have the same grid settings and a grid cell size of 30 m.

Radius = 15 m

(a) Sampling with radius = 15 m.

Radius = 30 m

(b) Sampling with radius = 30 m.

Radius = 60 m

(c) Sampling with radius = 60 m.

No downsampling

(d) No sampling.

Figure 3-19: Backscatter grid with different Poisson sampling settings (the grids have an equal gray scale).

Of the total 14,275,618 points in the data set, following statistics were observed:
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Radius of 15 m : Retained 2,043,077 which corresponds to 14.31 %

Radius of 30 m : Retained 1,055,105 which corresponds to 7.39 %

Radius of 60 m : Retained 519,717 which corresponds to 3.64 %

Generally speaking, figure 3-19 d is visually the most appealing and smoothest. Figure 3-19 b was

downsampled to a radius which corresponds to the grid cell size. Figure 3-19 c, with double the

radius, looks rather coarse compared to the other figures. Only figure 3-19 a is visually comparable

to the ‘raw’ data. As the degradation from figure 3-19 a to d shows, the general idea, to reduce

aliasing by downsampling the data, has worked. However, it is assumed that at first discarding 85 %

upward points has introduced aliasing effects which were then reduced. While this filter is generally

functional, it should first be evaluated if an aliasing problem is present.
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4. Results

The final program implemented consists of a Python module which includes the functions required

for the bathymetry and backscatter preprocessing and a Jupyter Notebook which acts as user inter-

face and constructor/initiator for the data processing (bathymetry filters and backscatter corrections).

Both components are connected by an ASCII interface. The preprocessing module is subdivided

in individual functions for the bathymetry and backscatter processing. Thereby the backscatter pro-

cessing is dependent on the bathymetry. The bathymetry (pre-)processing is furthermore subdivided

in three steps and corresponding functions. In a first step, the information required for the bathymetry

processing (XYZ and position data) is decoded using the pyall module. The extracted data is then

stored in respective pandas data frames which are indexed by their (date-)time stamp. These raw

data frames are passed to the second step/function which processes the navigation. Therefore, the

position data frame is first reduced only to the positions from the active system. Then the remaining

(active) positions are interpolated to the XYZ time index. The interpolation can be configured via the

function parameters, which allow to set the maximum number of consecutive pings for interpolation

(default 2) and a possible time offset, which can optionally be added to the navigation time index.

The interpolation method can also be passed as a parameter, but it is recommended to leave it at the

default method since it is based on the index time values. Finally, the function passes a data frame

which includes the combined navigation and beam bathymetry (swathes which lack one or the other

are dropped). In the third step, the vessel coordinates of the beam bathymetry are located using the

interpolated ping positions and heading information. Therefore, the Direct method of geographiclib’s

geoid class is vectorized to the rows of the previously combined data frame. The resulting data

frame which contains the located soundings, can then be written to an ASCII file.

The backscatter (pre-)processing is based on the previously created bathymetry data frame as in-

put, and then accumulates the backscatter information while reading the raw backscatter data from

source. Initially, a data frame set up was chosen similar to the bathymetry processing. However,

that approach required the data frame to have an index with three levels (swath, beam, and sample

index). In order to fill the raw data frame, a double for-loop would have been required (for beam in

beams of the swath; for sample in sample series per beam). This was considered to be computa-

tionally very inefficient. Thus, the nested loop was replaced by an accumulator function. For this

purpose Python’s reduce function is applied to each seabed image datagram in order to accumulate

the georeferenced samples beam by beam for that respective swath. The extracted samples are

then collected in respective numpy arrays and can be written to an ASCII file.

In order to continue with the processing notebook, the ASCII files from the preprocessing stage

or potential other sources are converted to the EPT format. Thereby, geographic data has to be

projected to the corresponding UTM zone. The data processing notebook then requires the path

to the EPT directory to open the Potree viewer. The EPT directory will automatically be inserted

as source in all PDAL pipelines, which are constructed in the notebook. Simultaneously, all outputs

of the notebook are stored along with the EPT data set. The bathymetry filters and backscatter

corrections are each build and applied separately. If the required data dimensions are not provided,

the pipeline execution will throw an exception. For each of the two pipelines, widgets are provided

which can be used to parameterize the stages of the respective pipeline. For the bathymetry filtering,

the Potree viewer can be manually updated and the individual filter results can be inspected. Once
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the pipelines are run, the export can be used to produce a grid of the desired dimension (depth or

amplitude) with the defined resolution, windowing etc. The grid automatically includes six bands:

min, max, mean, IDW1, count and standard deviation.

4.1. Comparison to data processed with QPS Qimera and FM Geocoder

During the RV Sonne cruise, 664 h of multibeam data were acquired along a track of roughly

6,350 nm covering an area of approx. 258,805 km2. The measured water depths ranged from 500 m

to 7,990 m (Kinne et al., 2019). Already onboard the Kongsberg raw bathymetry data was imported

and processed in QPS Qimera (version 1.7.2). Blunders were manually deleted using the swath and

slice editors. The cleaned soundings were then exported in ASCII and GSF format. Subsequently,

the bathymetry data was gridded with a 3x3 weighted moving average filter to a raster cell size of

60 m, data gaps interpolated and the grid finally exported to GeoTIFF. Additionally, 100 m grids in grd

format were created in GMT2. The backscatter data was processed in QPS FMGT3 (version 7.8.10)

with the default processing settings. Mosaics with a raster cell size of 30 m were generated and

exported as GeoTiFF (Kinne et al., 2019). For subsequent evaluation, six data subsets are chosen

which are meant to cover different bathymetric conditions (Fig. 4-1 and Tab. 4-1):

1
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Figure 4-1: Positions of SO268-3 data subsets

To compare the results of the program implemented in this work with the results of the bathymetry

and backscatter data processing performed on board, the resulting grids are compared quantitatively

and qualitatively. For this purpose, the Kongsberg EM 122 raw data files of the six defined subsets

are processed with the implemented program to produce grids that correspond to the grids produced

on board. Since the reference grids were produced for each day of the cruise, they firstly have

to be clipped to the extent of the respective subset raw data. For that purpose the open source

GIS software QGIS (version 3.8 Zanzibar) was used. It simultaneously provides capabilities for the

comparison of grids as well as cartographic tools for map production.

4.1.1. Bathymetry

For the production of the bathymetry grids, the raw data for each of the subsets was processed to X,

Y, Z ASCII files using the workflow outlined above. The raw bathymetry without any outlier filtering

1Inverse Distance Weighted
2Generic Mapping Tools
3FM Geocoder Toolbox
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Table 4-1: Summary of raw data subsets.

No. Date Period Min depth Max depth Bathymetric features

1 01/06/2019 03:31 - 07:31 −2,282.64 m −4,022.30 m Extension of Columbia River

2 07/06/2019 08:56 - 14:56 −3,772.19 m −6,143.55 m Seamount chain

3 12/06/2019 18:56 - 23:56 −5.82 m −6,775.52 m Smooth bathymetry

4 14/06/2019 05:56 - 07:56 −3,906.34 m −5,876.76 m Steep small scale structures

5 16/06/2019 18:50 - 23:50 −4,576.32 m −6,600.14 m Variety of bathymetric features

6 17/06/2019 10:49 - 14:49 −2,042.12 m −5,898.71 m Large Seamount

and grid interpolation is presented in appendix B.1 as 100 m mean depth grids. The according stan-

dard deviation of the soundings in each grid cell is presented in appendix B.2. Using the bathymetry

processing pipeline of the notebook, the bathymetric data was cleaned for outliers and exported to

grids. The pipeline parameters used for each subset can be seen in table 4-2.

Table 4-2: Summary of bathymetry processing steps.

ELM filter Radius outlier filter Statistical outlier filter

No. UTM zone Cell size Threshold Radius Min k Mean k Multiplier

1 9N (32609) 100 m 30 m 150 m 5 20 2.5

2 7N (32607) 200 m 30 m 200 m 15 20 2.0

3 3N (32603) 200 m 30 m 200 m 18 30 1.5

4 2N (32602) 200 m 30 m 100 m 4 8 2.0

5 1N (32601) 100 m 30 m 100 m 5 6 1.9

6 60N (32660) 100 m 40 m 80 m 2 10 2.5

The gridding settings for all of the six subsets were set to a grid resolution of 60 m using a radius of√
2 times the resolution (≈ 85 m) and a window size of 1 which corresponds to a 3x3 array around

cells to be interpolated. The overview of the resulting grids (IDW band) can be seen in appendix

C.1. The difference to the reference grids (reference grids minus processed grids) can be seen in

appendix C.2. The vast majority of grid cells lies within 25 m depth difference to the grids produced

in Qimera. Table 4-3 shows some grid statistics of the difference grids.

The deviation of the grids processed by the implemented program compared to the grids processed

in Qimera appears to be rather small. The average relative standard deviation (compared to the

mean water depth of the corresponding subset) is 0.18 %. Generally, the quantitative comparison

with an independent software suite indicates that there is no unidirectional systematic error in the

processing workflow for the bathymetry data. However, the min and max values of table 4-2 show

some larger deviations, which especially occurred in association with bathymetric features. Visually,

two different occurrences were identified: Firstly, at the slopes of bathymetric features itself such as

54



Results

Table 4-3: Summary of bathymetry difference grid statistics for each subset.

No. Mean σ Absolute mean Absolute σ Min Max Mean depth

1 −0.97 m 4.80 m 2.70 m 4.09 m −71.14 m 114.16 m −3,599.76 m

2 0.03 m 10.64 m 4.83 m 9.48 m −317.19 m 142.10 m −5,049.87 m

3 0.15 m 4.93 m 2.65 m 4.16 m −132.62 m 66.15 m −5,690.55 m

4 −0.04 m 8.53 m 3.59 m 7.74 m −370.46 m 200.21 m −5,265.92 m

5 −0.15 m 10.64 m 4.89 m 9.46 m −223.53 m 202.60 m −5,251.79 m

6 1.36 m 12.04 m 5.40 m 10.85 m −243.19 m 173.90 m −4,682.82 m

the seamount chain presented in figure 4-2 a, and secondly, in the outer beam areas. An example

of this can be seen in figure 4-2 b.

Deviation

-25 m

0 m

25 m

(a) Deviation at the seamount chain in subset 2.

(b) Deviation at an outer swath section in subset 2.

Figure 4-2: Deviation of processed grids (implemented program and Qimera).

4.1.2. Backscatter

For the production of the backscatter grids, the raw Kongsberg beam time series data was processed

to X, Y, (Z,) Amplitude ASCII files using the workflow outlined above. Appendix B.3 shows the raw

backscatter data gridded to 30 m mean values with no interpolation applied. All the backscatter sub-

sets were processed with the same parameters: Firstly, the backscatter point cloud was despeckled

using the median absolute deviation of the amplitudes with a threshold of 5 deviations from the me-
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dian. Afterwards, the point cloud was downsampled to a radius of 45 m using Poisson sampling.

Finally, the point cloud was gridded to a cell size of 30 m using a grid radius of 80 m which was

meant to smooth the amplitude samples. In hindsight it became apparent that other settings would

have been more optimal. A 6x6 array was used to interpolate cells without data. All the corrections

applied, visually enhance the final grid, nevertheless they are no comprehensive radiometric correc-

tions. An overview of the resulting backscatter grids can be seen in appendix C.3. The processed

backscatter of the implemented program and FMGT are compared similarly to the bathymetry data.

The difference grids are attached in appendix C.4. As can be seen, the difference of subset 4 shows

an implausible pattern. It can be suspected that this is caused by the reference grid. The grid is

scaled to a range from 0 dB to 255 dB. Those values are not directly comparable to the ranges of the

other grids that range from 0 dB to −65 dB and thus it seems reasonable to exclude subset 4 from

the comparison. The difference statistics of the other subsets are listed in table 4-4.

Table 4-4: Summary of backscatter difference grid statistics for each subset.

No. Mean σ Absolute mean Absolute σ Min Max

1 −4.25 dB 4.23 dB 4.98 dB 3.34 dB −23.77 dB 21.42 dB

2 −4.30 dB 4.52 dB 5.08 dB 3.63 dB −26.05 dB 29.12 dB

3 −2.86 dB 3.81 dB 3.94 dB 2.67 dB −22.98 dB 25.93 dB

4 – – – – – –

5 −3.01 dB 3.93 dB 4.03 dB 2.87 dB −23.79 dB 33.12 dB

6 −3.25 dB 3.92 dB 4.20 dB 2.89 dB −26.75 dB 28.41 dB

The mean values imply a clear negative bias. This impression is strengthened when inspecting the

overview of the difference grids (appendix C.4). There are only little white areas but large orange

regions. Hence, the processed grids tend to have lower values than the reference grids. Thereby,

the effect seems to increase towards the outer beams. In fact, the strongest positive deviations

occur in the center beam area. Another pattern observed especially in subsets 2, 5, and 6 is that

raw data files had abrupt transitions. Figure 4-3 shows an exemplary section of subset 2.

BS strength

-65 dB

0 dB

(a) Grid processed in the implemented program. (b) Reference grid processed in FM Geocoder.

Figure 4-3: Section of subset 2 backscatter grids.
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Figure 4-3 a is the grid produced with the implemented program and figure 4-3 b was produced

in FMGT. It looks as though the abrupt transition only occurs in the reference grid. In figure a

there is no apparent difference between the left and the right side of the section. The reference

grid looks a bit "smeared" in the along-track direction, which makes the features look comparatively

blurry. In contrast, figure a looks rather speckled, but somewhat sharper. However, it does show

some high amplitude artifacts in the center beam region that are barely visible in Figure b. The high

amplitudes could possibly have been better corrected with other despeckling settings (MAD filter

with 3 deviations from the median).

Similar observations were made in figure 4-4. Figure b appears again slightly smeared in along-

track direction while figure a appears sharper but also more speckled. In comparison to the previous

example, this section was taken from subset 3 in an area with a rather flat bathymetry, except a

small elevation.

BS strength

-65 dB

0 dB

(a) Grid processed in the implemented program. (b) Reference grid processed in FM Geocoder.

Figure 4-4: Section of subset 3 backscatter grids.

Finally, figure 4-5 shows a section of subset 1. This subset seems to be strongly affected by artificial

artifacts. It can clearly be seen that there are bands in the along-track direction. They are more

strongly visible in figure a and seem to be partially corrected (radiometrically) in figure b. Those

are probably artifacts caused by differences of the individual MBES transmit sectors. A detailed

discussion of the observed patterns and artifacts can be found in chapter 5.

4.2. Validation with RV Heincke data

The RV Heincke (Fig. 4-6) is one of the smaller German research vessels which was used by a

group of HCU Hamburg students in context of a university training survey on the North Sea. The

vessel is equipped with a Kongsberg EM 710 multibeam echo sounder. In contrast to the EM 122,

it is designed for high to very high resolution seabed mapping in water depths ranging from 3 m to

2,000 m, depending on the in situ conditions. Typically, it can achieve a swath width of up to 5.5 times

the water depth. The MBES mounted on the RV Heincke has an along-track beam width of 1◦ and

an across-track beam width of 2◦. It operates with shallow water acoustic frequencies in the range

of 70 kHz to 100 kHz. Just as the EM 122, it uses the concept of transmit sectors, roll, pitch and yaw

stabilization for the transmit beams and roll stabilization only for the receive beams. It also offers

equidistant and equiangle mode and dual swath measurements. The system has 128 beams / 200
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BS strength

-65 dB

0 dB

(a) Grid processed in the implemented program. (b) Reference grid processed in FM Geocoder.

Figure 4-5: Section of subset 1 backscatter grids.

soundings per swath in the given configuration (Kongsberg, 2007).

Figure 4-6: RV Heincke (www.awi.de)

The EM 710 belongs to the same series as the EM 122. That is why both (as far as investigated)

use the same datagram formats. Meaning, both MBESs use the XYZ, the same seabed image,

and position datagram. Also, they both provide beam data for beams with a valid and an invalid

detection in order to allow for backscatter processing. Hence, it is assumed that the implemented

data preprocessing should be applicable to the EM 710 data. However, there could be problems

related to the shallow water environment. In particular, the high data volumes caused by the much

higher ping rate and the strong tidal effects in the North Sea could be noticeable. Similar to the

approach used earlier, two subsets are chosen to test how well the implemented program can be

applied to the EM 710 data of the RV Heincke cruise. Both selected data sets show wrecks which

lie in the south of the German Island Helgoland (Fig. 4-7).

4.2.1. Feasibility for other Kongsberg EM series MBESs

For the RV Heincke data set, recorded with the MBES system Kongsberg EM 710, the same pro-

cedure is applied to the raw data as previously to the RV Sonne data set. In order to preprocess

bathymetry and backscatter to attributed point clouds, the required raw datagrams are decoded and

then merged, georeferenced, etc. As the development of the implemented program is founded on

the EM 122 data set, a potential error source could arise from the raw data decoding. But once
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Figure 4-7: Wreck positions in RV Heincke data set.

the necessary information is retrieved, the subsequent processing algorithm should have no diffi-

culties to work as expected. However, in a first attempt to import the EM 710 data, the program

threw an exception due to an inappropriate beam index. The EM 122 in the given configuration has

432 soundings per swath. On the other hand, the EM 710 mounted on the RV Heincke only has

200 soundings per swath. Kongsberg has removed the beam index as it became redundant infor-

mation when they started providing beam data for all beams, also the ones lacking a valid bottom

detection (Kongsberg, 2018). Therefore, an artificial beam index was created in the preprocess-

ing that indexed the bathymetry and backscatter information along the swath. It was automatically

configured to use 432 soundings as in the EM 122 data. This actually caused the EM 710 data

preprocessing algorithm to fail. In order to adapt the new sensor, the beam index was changed to

automatically adjust to the number of soundings in a given swath. After this adjustment, the data set

could be seamlessly decoded and preprocessed.

Since the application of the implemented program has worked with the EM 710 data, it is assumed

that other Kongsberg MBES systems of the same series would also work. In examining the datagram

formats described in Kongsberg (2018), it can be seen that there are two groups of Kongsberg

MBESs. Of two identified possible combinations, each will use either one combination of bathymetry

and backscatter datagrams or the other. Table 4-5 shows an overview of the findings.

In table 4-5 it can be seen that the upper four models are basically the successors of the lower

six models. Following the information on Kongsberg’s website (www.kongsberg.com/maritime), the

latter six have already reached their end of life. With the replacement of the old EM series, the

bathymetry and backscatter datagrams were probably also updated. Since the EM 122 and EM

710 could be straightforwardly read and processed by the same decoder, it is assumed that the

other models of the new series (EM 302, EM 2040 and EM 2040C) can also be processed with the

implemented program.
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Table 4-5: Summary of Kongsberg EM series datagrams.

Model Application range Bathymetry Backscatter

EM 122 Deep/Very Deep water surveys XYZ Seabed image data 89

EM 302 Deep/Very Deep water surveys XYZ Seabed image data 89

EM 710 Mid/Deep water surveys XYZ Seabed image data 89

EM 2040 (C) Shallow water surveys XYZ Seabed image data 89

EM 120 Replaced by EM 122 Depth Seabed image

EM 300 Replaced by EM 302 Depth Seabed image

EM 1002 Replaced by EM 710 Depth Seabed image

EM 2000 Replaced by EM 2040 and EM 2040C Depth Seabed image

EM 3000 Replaced by EM 3002 ? Depth Seabed image

EM 3002 Replaced by EM 2040 and EM 2040C Depth Seabed image

4.2.2. Feasibility in shallow water environments

The RV Heincke data set is located in extremely shallow water with depths in the range of approx-

imately 15 m to 35 m. In contrast, the RV Sonne data set was located between several hundred to

several thousand meters of water depth. While the general data structures and patterns of shallow

water surveys are typically not much different to deep water surveys, the data amount is expected to

increase. With an average sound velocity in water of 1,500 m s−1, the round trip travel time in shallow

water can be determined to 30 m
1,500 m s–1 = 0.2 s and in deep water to 5,000 m

1,500 m s–1 ≈ 3.3 s. Even though

this cannot be directly transferred into a ping frequency, it does give an impression of the amount

of data that is recorded in shallow water surveys compared to deep water surveys. In contrast to

the RV Sonne data with a constant survey line/file duration of 60 min, the length of the files in the

RV Heincke data set is variable. Consequently, the number of pings per file also varies. In addition,

the EM 710 (unlike the EM 122) has slightly less than half the soundings per swath. Likewise, water

level changes have a relatively stronger influence on shallow water surveys. Since the North Sea is

a tidal body of water, this effect can be expected to have a significant impact on the outcome of the

data processing, especially for wreck 1, which was surveyed on two different days.

The result of the bathymetry processing can be seen in appendix D. Despite the expectations, the

dense data did not impose a major issue. However, it should be emphasized that both subsets cover

only small areas. As assumed, the tidal effect can be seen in the bathymetry processed with the

implemented program (Fig. 4-8 a). When compared to a data set that was externally corrected for

tides and then imported as ASCII (Fig. 4-8 b), it can be seen that the entire dataset is too deep,

but also that the individual survey lines are not self-consistent. While the implemented program has

been deliberately kept open for external corrections, it is definitely a desirable adaptation to add a

tidal correction to the program. Figure 4-8 c shows the tide corrected data set after it has been

cleaned for blunders. In general, the filters could also be adapted to the shallow water environment.

It was observed that the survey line crossing vertically had very strong artifacts. It was reported that

weather conditions were suboptimal at times, which may have resulted in poorer data quality. These

artifacts were sometimes so dense that they could not be completely filtered out.
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(a) Raw bathymetry (of implemented program).

Depth
-30 m
-26 m
-22 m

(b) Uncleaned bathymetry corrected for tide. (c) Cleaned bathymetry corrected for tide.

Figure 4-8: Tidal influence in wreck 1 data set.
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Furthermore, in the data set of wreck 2, a pattern was observed in the grid processed by the im-

plemented program. Figure 4-9 shows the same section of the data set with different processings.

Figure a was fully processed (preprocessed, cleaned, and rasterized) in the implemented program.

In contrast, Figure b was externally preprocessed and corrected for tides, but cleaned and gridded in

the implemented program. Figure c is the difference grid (b - a). Most of the difference is caused by

the tide, which can be assumed to be constant for this section. However, focusing on the small-scale

differences, a similar pattern can be seen as previously noted in the RV Sonne data set.

(a) Result implemented preprocessing.(b) Result of external preprocessing.

0.60 m
0.75 m

(c) Difference of figure a and b.

Figure 4-9: Section of the wreck 2 data set.

For the small features in the center of the section, the difference is systematically smaller on one

side and larger on the other than in the surrounding area. Also, the data that was preprocessed in

the implemented program shows a fan pattern in the outer swath area that does not appear in the

externally preprocessed grid. Since only the preprocessing differs in the two data sets, it was most

likely caused in this step.
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5. Evaluation and discussion

With respect to bathymetry processing, two patterns were identified when comparing with reference

data processed onboard. The differences increased first around bathymetric features and second in

the outer beam regions. The latter is not surprising in that the filters applied to the bathymetry were

generally too weak rather than too strong. Typically, the outer beams have the highest inaccuracies

as the errors get worse with increasing (oblique) range and angle of incidence. When manually

cleaning bathymetric data, these values are often heavily cleaned and thinned. When using semi-

automatic filters instead, one must weigh how aggressively to set the filter to discard all blunders

while not erroneously discarding soundings that actually represent the seafloor. Often it is better to

falsely accept a blunder than to falsely discard an actual sounding.

Regarding the second pattern observed: It appears that the bathymetry is systematically shifted, as

it shows a repeating pattern of negative differences on one side of a bathymetric feature and posi-

tive differences on the other side. Further, it is assumed that this pattern does not correspond to an

absolute heading, but actually occurs along the direction in which the ship is moving. Furthermore,

the measured soundings are always too low in the uphill direction and always too shallow in the

downhill direction, compared to the reference grid. Consequently, it must be a systematic effect that

occurs along the track. In addition, a corresponding pattern can be seen in the RV Heincke data.

The assumption is corroborated because the effect is inverted, for example, at the depression of the

underwater river in subset 1. One possible cause could be a time delay between the navigation pro-

cessing of the two programs, or a pitch effect that was treated differently. The implemented program

used the XYZ data, which is already corrected for potential misalignments of the various sensors

that are known to the system and defined in the installation parameters. Typically, misalignments

such as a sensor tilt, if known, would be calibrated directly in the MBES system. Although this could

be a possible source, it is excluded because it would likely have been set directly by the operators

onboard and not corrected in the post-processing software. Another source of a pitch tilt could be

the dual swath operation mode. If the pitch difference of the two swathes per ping is not considered,

this could also cause a pitch error. To verify this theory, it would be necessary to perform the same

comparison with a MBES without dual swath.

Regarding the time delay theory: As noted in 3.3, the GNSS and MBES times used, followed the

recommended procedure for time synchronization and leave little room for reasonable doubt. Al-

though it cannot be ruled out with certainty, it is rather suspected that it could be caused by the way,

the navigation is interpolated to the MBES ping time. Since the effect is bidirectional, it does not

show up in the mean of the differences. However, when using the mean of the absolute differences,

the respective positive and negative differences do not cancel out and should be visible. Assum-

ing that the absolute mean is mainly affected by this effect, except for a few slightly larger errors,

the mean of the respective absolute differences of each subset is used to estimate the error. The

mean absolute difference is 4.01 m. Assuming that the ship was mostly sailing at 13 nm, which is

approx. 6.69 m s−1, the effect would have been caused by a time delay of about 600 ms. In reality,

the value is probably somewhat higher because the flat areas reduce the effect of the time offset on

the absolute mean. Since the position datagram (of the active position system) was sent in 500 ms

intervals (section 3.3), this cause also seems to be reasonably excluded. It cannot be conclusively

determined with certainty where exactly the error is induced. By validation with the RV Heincke data,
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the error can be narrowed down to the preprocessing. A processing error in connection with the dual

swath measurement mode could not be excluded at this point.

Another aspect that was noted in connection with the interpolation can be seen in Figure 5-1. It

is known that there were some issues with the position datagrams being slightly shifted compared

to the XYZ datagrams. This caused some of the XYZ datagrams to pile up at the end of the raw

data files with no position information left. The problem was noticed quite early and a solution to the

problem was obtained by extrapolating these ping positions. However, as figure (5-1) shows, this did

not completely close the gap between two adjacent files. Sometimes, such as on the right side of

the figure, it worked better, but the gap on the left side is still quite obvious.

Depth

-5828 m

-5325 m

-4850 m

-4375 m

-3900 m

Figure 5-1: Data gaps between adjacent files caused by navigation interpolation.

A third aspect, which was found unrelated to the direct comparison, is that points along slopes that

were facing away from the vessel position, were strongly discarded in the bathymetry filtering. In the

overview (appendix C.1), those areas can be seen as no data gaps in the grid. The primary cause of

this lies in the origin of those points. When the MBES carrying vessel traverses large and/or steep

bathymetric features, such as the two seamounts in subset 1 and 2 or the edgy slopes in subset

6, the tilted beams of the swath hit the front while the perspective backside remains acoustically

shaded. Beams streaking the feature’s backside most probably fail the MBES internal bottom detec-

tion algorithm and are therefore invalidated. As stated earlier (section 3.4), all of the 6.23 % invalid

soundings were either inter- or extrapolated to provide a basis for the backscatter information. While

interpolation is an appropriate means for the compensation of missing data, those soundings are

not guaranteed to represent the actual bathymetry. Owing to their artificial origin, it seems as they

tend to be rapidly detected by statistical outlier methods. While the data gaps caused by this effect

are not nice, it is actually justified to filter those points since it is not certain whether they actually

represent the seafloor.

In general, the bathymetry filters used, performed satisfactorily with respect to the comparison with

manually cleaned data. However, it was noticed that all the filters adapted, work statistically on a

point cloud basis, meaning that effects intrinsic to the MBES swath measurement configuration are

not specifically considered. For example the across-track resolution in the RV Sonne data was by

a factor two higher than the along-track resolution, the outer beams have larger errors, etc. Since

all of the provided filters work on a neighborhood basis, data sets with a highly varying depth would
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have to be subdivided for filter adjustment. This approach is insofar suboptimal as it would intro-

duce inhomogeneities to the filtering and hence the different error sources would not be addressed

equally. Also, large groups of blunders partly fulfill the neighborhood criterion and can therefore not

be filtered out. To compensate such effects, both surface-based filters as well as filters that take into

account the swath geometry could help.

The backscatter results exceeded by far the expectations, especially since no radiometric correc-

tions were applied. This is also the reason why, strictly speaking, the two data processing results

are not comparable, even though an attempt is made to evaluate the differences at least qualitatively.

It should be kept in mind that this is partly a comparison of the Kongsberg real-time radiometric cor-

rections and the default FMGT corrections, since they were not specifically adjusted and optimized

during the cruise. Notwithstanding the above, the georeferencing looks promising. As can be seen

in the results, the grids processed by the implemented program look sharp while the FMGT grids

look rather smeared. Schimel et al. (2015) describe that, when using beam time series instead of

single value per beam raw data, FMGT uses an approach similar to the one outlined in Beaudoin et

al. (2002). As briefly explained earlier, this approach forms half-swath time series which are used to

populate a TWTT1 indexed array. Therefore, the final across-track resolution is essentially affected

by the chosen array interval. While this explains the apparent fuzziness of the reference grid, an

insufficient array interval would appear as across-track smearing and not along track. This effect is

therefore rather assumed to be caused by the applied filter and/or gridding algorithm(s).

In contrast, the solution used in the implemented program concatenates and interpolates all samples

provided in the beam time series (except the samples external to the two respective outermost beam

bottom detection.) It was thereby noticed that for example at 5,500 m water depth the processed grid

is on both sides constantly 120 m wider than the reference grid. The same constant offset was also

measured at a water depth of 2,250 m. This is insofar untypical as it excludes any potential origins

associated with the water depth. After the raw point cloud data was overlaid, it was found that the

boundary of the point cloud corresponded to the extent of the reference grid. Thus, it is suspected

that the offset is caused by the windowing applied during the grid creation and does not actually

yield additional (and independent) information.

The drawback known in the backscatter processing procedure was the lack of a comprehensive

radiometric correction. This was founded on the awareness that Kongsberg already implements a

complex dynamic gain that is meant to produce “backscatter data that are reduced to backscatter-

ing strength” (Schimel et al., 2015). In order to enable real-time processing, the dynamic gain is

based on some simplified models. If the model assumptions fail to depict the actual conditions, it

will become visible as artifacts. In the difference grid (appendix C.4), it can clearly be seen that

the differences unambiguously show an angular dependence. Therefore it is assumed that the an-

gular dependence was treated differently in FMGT. Kongsberg itself uses a generic model for the

correction of angular dependence that does not consider the actual functional interrelationship of

the seafloor type. As can be seen in the processed backscatter grids (appendix C.3), the real-time

correction however visually seems to be reasonable as there are no obvious across-track dependen-

cies visible. On the other hand, FMGT, after removing Kongsberg’s angular dependence correction,

implements a correction that works on a line-by-line (which corresponds to a file-by-file) basis. An

1Two Way Travel Time
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AVG2 is thereby applied using corrected backscatter data (Schimel et al., 2015). This difference of

the angular dependence correction is undoubtedly what dominates the across-track pattern of the

difference grid. As the correction of FMGT works on a file-by-file basis, the abrupt file transitions,

which were observed in figure 4-3, probably arise from the default postprocessing AVG. Figure 5-2

shows a section of the subset 2 reference grid that was processed with FMGT. For visualization

purposes the contrast was enhanced. The light blue boxes indicate the boundaries of two adjacent

files.

BS strength

-40 dB

-20 dB

Figure 5-2: Angular dependence correction artifacts in the reference (FMGT) grid of subset 2.

Especially in the center box, the backscatter level of the left and right file has an abrupt transition

with a change of level. This actually enhances the assumption, that the along-track backscatter level

jumps are artifacts from the file based AVG approach in FMGT, which caused differences in the

processing applied to the individual files.

In addition, it was observed that in some of the subsets, namely 2, 5 and 6, the angular dependence

differences have strong deviations from one side of the swath to the other. When comparing this

observation to the processed bathymetry (appendix C.1), it can be seen that it correlates with the

subsets which had the rougher and more diverse bathymetry. Typically, rough bathymetry tends

to also be harder since usually soft sediments such as sand or mud would level out and form a

rather smooth surface. Both factors have a major effect on the angular acoustic response of the

seafloor. It is noticeable that, for example, when looking at subset 2, the seamount chain has a

kind of waveform that is once on the port side and then again on the starboard side of the ship.

In contrast the surroundings look rather flat and presumably muddy. When determining the angular

dependence correction on a subset of data (no matter the length of the subset), which is on one side

rough and rocky and on the other side flat and muddy, the determined AVG will reflect this pattern.

For the smoother subsets such as 1 and 3, the radiometric correction seems to be very smooth and

plausible.

However, besides the above stated relation, no essential bathymetry dependence could be detected

in the difference grids. Only weak patterns in subset 2, 5 and 6 seem to slightly correlate with

the bathymetry. This is insofar noteworthy as Kongsberg assumes a flat seafloor for the correction

of the ensonified seafloor (Hammerstad, 2000). While this does not necessarily mean that the

2Angle Varying Gain
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ensonified seafloor is perfectly corrected, it does on the other hand show that the reference grids

do not have a significantly different correction. Schimel et al. (2015) briefly describe the correction

for ensonified seafloor area which is applied in FMGT. For Kongsberg systems it generally uses

the nominal pulse width and the transmit specific pulse length (at least for those systems which

distinguish transmit sectors). For each beam the algorithm determines whether the ensonified area

is pulse or beam width limited. The latter mainly occurs around the nadir beam where the beam

ensonifies the footprint instantaneously. If a bathymetric terrain model is provided, it is additionally

used to estimate the true incident angle in along- and across-track direction. Since FMGT does

only consider the bathymetry if it is explicitly provided, it is assumed that this was not done for the

backscatter data processed during the RV Sonne cruise (meanwhile informally confirmed) rather

than that the algorithm would not have provided an improved result.

Finally, the along-track banding pattern which was observed especially in subset 1, most probably

occurs due to different configurations of the transmit sectors. Among others they are individually

adjusted in pulse length and transmit frequency. The consequential source level and (modeled)

beam pattern variations of the different sectors are directly compensated and should not appear in

the raw backscatter data. Also, Kongsberg is the only MBES manufacturer who completely considers

the frequency dependent variations when estimating the absorption in the water column (Schimel

et al., 2018). Therefore the only effect, which remains as potential transmit sector caused artifact,

is the variation of pulse and beam width. The latter is indirectly varied by the change of frequency.

As stated in Schimel et al. (2015), it is not known whether Kongsberg itself considers changes of

beam width which would otherwise be visible in the near nadir area. On the other hand, the pulse

width is the critical parameter in the off nadir areas. Thereby issues can be specifically caused by

the FM chirp waveform which is typically used to extend the range. However, the signal waveform

variations were found to be most probably corrected by Kongsberg (Schimel et al., 2018). When

directly comparing a section of subset 1 (Fig. 5-3) in the processed grid a and the reference grid b,

the reference grid is much more appealing and seems to better work out the local variations rather

than sectorial variations. Thereby the nadir stripe in figure a is assumed to be an artifact of the high

intensity specular reflection of the nadir beams rather than an artifact of the beam width.

BS strength

-45 dB

-15 dB

(a) Grid processed in implemented program. (b) Grid processed in FMGT.

Figure 5-3: Section of subset 1 backscatter grids showing along track banding artifacts.
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5.1. Comparison to the QPS software suites

Often when working with hydrographic data, commercial software packages are so complex and

extensive that it is easy to forget how many components need to be considered in the background to

deliver the final hydrographic products. When comparing the implemented program, the aim is not to

compete, but rather to assess how many of the required components have been achieved and what

important steps are still missing. Emphasis is placed on the aspects identified in the discussion of

the results. The software comparison is based on the two QPS suites that were used to process

the RV Sonne reference data: Bathymetry processing was done in QPS Qimera, and backscatter

processing was done in FMGT, a module of QPS Fledermaus.

Bathymetry processing

The general workflow in Qimera is actually similar to the workflow implemented in the program. At

the beginning the raw data is decoded. Based on the extracted datagrams, the bathymetry point

cloud is calculated and then cleaned for blunders.

When the raw Kongsberg ALL files are imported, Qimera attempts to decode as much of the given

information as possible. In contrast to the implemented program, it also decodes all the data required

to process the raw bathymetry data stored in the raw range and angle datagram. That includes

among others the vessel configuration stored in the installation datagram, the vessel motion reduced

from any Kongsberg real-time corrections, reduced positions, heights, any applied SVPs and the

surface sound speed used for beam forming, as well as the sonar settings collected from the various

sources (How-to Qimera: Migrate a Qimera Project to FMGT 2020). When using the raw bathymetry,

all the IHO (2008) required sensor corrections can be applied and/or individual sensor data can

be substituted by more suitable data (i.e., the vessel configuration could be changed and/or other

motion data could be used). As the implemented program is based on the XYZ bathymetry, all

these corrections cannot be applied. While this is a drawback, the amount of data Qimera needs

to collect to process the raw bathymetry shows how complex it really is. Since Qimera removes

all corrections which were applied by Kongsberg to the sensor data in real-time, it complies with

the assumptions that the shift of the bathymetry observed during the comparison is caused by a

preprocessing difference.

On the other hand, Qimera also offers to use the processed (XYZ) bathymetry instead of the raw

data. In this case, the post-processing options are limited, but it still provides a better basis for

comparison. When using the XYZ datagram, Qimera still offers the correction and substitution of

the navigation data and the tide correction. For the latter, it should be noted that Kongsberg ALL

is one of the formats that does not provide tidal data. Therefore, an external tide file is always

required when applying tidal corrections (Qimera: Sonar Source Data Import Capabilities 2020).

Especially the tidal corrections would have been useful for processing of the RV Heincke data set,

since it clearly suffered from tidal effects which could have been resolved by a tide correction. The

corrections which are not possible anymore in Qimera when using the XYZ bathymetry, include

vessel configuration, sound speed reprocessing and motion correction.

Qimera offers both manual and (semi-)automatic approaches for bathymetry cleaning. Manual data

cleaning can be either area-based or swath-based. In general, both tools allow the operator to
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manually discard suspicious soundings. In the case of the area-based approach, the surface of a

selected data subset is isolated for manual cleaning. On the other hand, the swath editor is survey

line based and allows the operator to individually clean consecutive swathes of that specific line.

Experience has shown that manual cleaning functionalities can come in very handy. Especially the

grouped blunders can be difficult to detect by filters, although they are very obvious to the human

eye. However, manual data cleaning is also a lengthy task and to some degree dependent on

the hydrographer. While a good hydrographer probably achieves the better results, it still does not

guarantee consistency when combining data sets processed by different hydrographers. That is

why it should be focused on improving the filtering methods rather than recreating manual cleaning

functions with open source tools.

The (semi-)automatic approaches in Qimera include spline and CUBE3 filtering. The spline filter is

based on the idea that a spline surface is fitted through the noisy bathymetry data and all sound-

ings, which lie too far from the surface are rejected. Similar to the statistical outlier filter, it requires

two passes trough the data set. In a first pass the (statistically) large blunders are removed until

a certain quality criterion is met. In the second pass a refined spline surface is created to flag the

noisy soundings (How-to Qimera: Spline Filtering details 2020). A handy feature of the spline filter

implementation in Qimera is that it provides spline filter configurations according to the IHO spec-

ifications for hydrographic surveys as defined in IHO (2020). The filters used in the implemented

program partially also use statistical methods to detect errors, but work more at the local neighbor-

hood level. This has the disadvantage that the MBES resolution depends on the water depth and

thus the neighborhood parameters change over a data set.

According to Le Deunf et al. (2020), the CUBE filter is one of the most popular filters in bathymetric

data processing. Several commercial software suites implement the CUBE filter which also partly

biases its popularity. The algorithm is described in Calder and Rice (2011) (as cited in Le Deunf

et al., 2020). It consists of three stages: In a first stage, each sounding is associated with its TPU4.

Then, for each node of a grid, a hypothesis is established where the seafloor is most likely located. In

the third stage, the operator dissolves any ambiguities by conforming the best fitting hypothesis. This

approach may be classified as semi-automatic, as it requires the hydrographer’s interaction. This

has the advantage that the blunder rejection does not solely depend on the subjective perception of

a human while simultaneously complicated blunder agglomerations can still be manually addressed.

Backscatter processing

FMGT requires both the georeferenced bathymetry and the backscatter data. Kongsberg ALL is the

only manufacturer-specific format that can be used directly to provide FMGT with both pieces of in-

formation in one file. However, since the ALL format does not provide the ability to store accept/reject

flags along with the bathymetric information, it may be necessary to first clean up the bathymetry and

then export/import the cleaned bathymetry along with the raw backscatter (FMGT Quick Start Guide

2020). In the implemented program, only the uncleaned bathymetry can be used to georeference

the backscatter beam time series. Since the beams are concatenated between bottom detections,

the algorithm relies on bathymetric information being available for each beam. On the other hand, it

3Combined Uncertainty and Bathymetry Estimator
4Total Propagated Uncertainty
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may be questionable how representative beam time series are if they are associated with a blunder.

FMGT offers three possible outputs for backscatter image processing: Mosaic, statistics and ARA5.

Since the implemented program computes only the backscatter mosaic, the comparison will focus

solely on that. Already in the data comparison between the implemented program and FMGT, some

differences were noticed. As deduced, the basic georeferencing algorithm probably differs slightly.

However, the major difference is imposed by the radiometric correction which is applied in FMGT but

not in the implemented program. Following the description of the initial Geocoder implementation by

Fonseca and Calder (2005), each sample is first corrected for the variable acquisition gains, power

levels and pulse widths. Subsequently, a range of individual radiometric corrections is applied,

whereby the flat seafloor assumption used to enable real-time processing is replaced by the actual

bathymetry measured by the MBES. Thereby, the actual ensonified area of the seafloor and also the

effective incident angle are computed and the latter is used to correct the Lambert’s law correction

applied during acquisition. Afterwards the beam pattern is corrected on a ping by ping basis under

the consideration of the angular responses around each ping.

In addition to the radiometric corrections, Geocoder also removes the speckle by using a morpho-

logical median filter with a percentile threshold. The mapping of the backscatter samples in mosaic

space is then conducted by using the so called homography. In an attempt to summarize the more

complex algorithm, one may say that a “rectangle in the track coordinate system is transformed to

a quadrilateral in the projection coordinate system” (Fonseca and Calder, 2005). The pixel inside

the quadrilateral is then assigned a backscatter value interpolated from the initial four samples. Af-

terwards, an inverse-mapping is applied to the sample set in order to avoid aliasing effects. Both

despeckling and antialiasing attempt to remove the noise in the data while preserving the large

structures. This might have partially led to the effect perceived as smeared, but it is partly desired.

In the final mosaic algorithm, again a rather complex method called feathering is applied, which is

meant to produce seamless transitions between overlapping survey lines by inter alia considering

the quality factor of a sample (Fonseca and Calder, 2005).

The outlined workflow, which is at least similarly built into FMGT, is so complex that an actual com-

parison makes little sense. However, it does give an impression of how big the difference is between

creating a backscatter mosaic that is visually appealing and one that is physically meaningful. Even

if one does not aim for a similar sophisticated level of radiometric corrections, there is definitely room

for improvement.

5.2. Potential improvements and outlook

Since several components are involved in the program implemented in this thesis, it makes the most

sense from a purely structural point of view to derive possible improvements along the processing

flow. When creating the bathymetry point cloud, the identified deficits were the missing sensor

corrections. Although it is an option to start with the raw bathymetry data, it is not considered the

most important improvement at this point, mainly because of the high effort it requires. Of course,

some correction possibilities are not feasible when using the processed XYZ instead of the raw

range and angle bathymetry, but the achievable results are comparably sound if good acquisition

practices are ensured. Corrections that can and certainly should still be implemented are primarily

5Angle Range Analysis
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the tidal correction, but also navigation processing. In fact, these two improvements are considered

the most important for bathymetry processing. Since there is no tidal data in the Kongsberg ALL

raw files, additional tidal data are needed. They would have to be provided before the soundings are

located. Then, similar to the navigation, they could be interpolated at the MBES ping time and the

appropriate depth correction added to the measured beam depth, simultaneously with the transducer

depth. This sounds simple, but it actually requires user interface customization as well. Additionally,

consideration must be given to how the tidal data should be formatted, or whether the tidal data

reader can be adapted to different formats. What might also be worth considering in this context

is the ‘height’ datagram, which provides height information to a predefined geoid model. It was not

found in the available Kongsberg data (EM 122 and EM 710), but in general it might be interesting

to evaluate if it could be used to obtain the depth of the seafloor with respect to the desired vertical

reference.

The navigation processing is also considered an important improvement. Again, assuring good

survey practice should avoid systematic navigation errors. However, in contrast to for example the

motion sensor, a GNSS antenna depends on its surroundings. Just as the MBES, GNSS is an

extremely complex measurement set up with various potential sources of error. Without focusing too

much on errors which might occur in the atmosphere and at the satellites, there are still a couple

of sources left, such as receiver noise, multipath, signal shadowing (by bridges in harbors). For

both test data sets (from RV Sonne and RV Heincke), the surroundings did not really impose a

source of error. However, there was a problem with the position data streaming that caused the

required positions of one file to be partially written to another file. Actually, this shows quite well

one of the decisions which have to be faced when attempting the navigation processing: Should

the entire track of a data set be processed coherently or rather on a file by file basis. The latter is

easier to implement but would not coherently resolve issues that effect several files. This could be

avoided by collecting the navigation data from all the files of the data set to process them together.

This approach, however, requires solutions on how to efficiently handle the navigation data and

the associated bathymetric information. Irrespective of how to handle the data, it should also be

considered what processing tools would actually be required such as the visualization (probably 2D

would be enough), possible filters versus manual options, etc.

As for bathymetry filtering, the main structure is quite adaptable, but also depends on what is pro-

vided in PDAL. While not acute, it would always be worthwhile to update the components of the filter

pipeline as PDAL evolves. In particular, it is assumed that a surface-based and/or a cluster-oriented

filter would greatly improve the bathymetry filter pipeline. While at this point not tested, especially

the PDAL planefit and the dbscan filters for clusters should be considered for adaptation, since they

are assumed to address some of the deficits found. Another thing that should at least be mentioned

is the mbio reader stage of PDAL, which is intended for bathymetric data and relies on the MB-

Systems library. At this point, the mbio reader can only be run as a dynamic plugin under Linux/OS.

This would generally be difficult to implement under Windows and would therefore exclude many

potential users. In addition, it offers configurations for various MBES manufacturers, but not for the

processing itself. All in all, it shows that PDAL is aware of the hydrographic community and may

develop other tools intended for hydrographic data. In this case, it would greatly improve the overall

pipeline.
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The major drawback of the backscatter processing is the lack of a radiometric correction. Depending

on whether the focus lies on bathymetry or backscatter processing, this can also be considered one

of the important improvements. The quality of the RV Sonne data processing results heavily relied

on the complex corrections which were applied by Kongsberg during acquisition. The result was a

backscatter mosaic that was at least visually appealing. However, it is assumed that it is physically

not reliable/meaningful and can not be quantitatively combined with independent backscatter data.

In the comparison with QPS Fledermaus’s FMGT, it was shown how complex a proper radiometric

correction can be. While these corrections are certainly not easy to achieve, at least simpler ap-

proaches should be implemented. Hammerstad (2000) describes some of the ‘things’ that could be

done.

In terms of visualization, Potree has proven to be a very valuable tool. At the moment, the default

configuration is used, which has led to some impractical side effects. Among other things, the clas-

sifications still correspond to the default LAS classes and not to the bathymetry filters. Additionally,

no backscatter can be displayed until now. Either an additional visualization for the backscatter mo-

saics would have to be offered or alternatively and preferably the Potree viewer would have to be

configurated accordingly.

Without enumerating in detail all the possibilities of improvement, the most important ones are sum-

marized as follows, according to their estimated relevance:

1. Tide correction of bathymetry

2. Simple approaches of radiometric corrections for the backscatter processing

3. Potree configuration for backscatter data and bathymetry filter classification

4. Navigation processing

The results of the program implemented in this thesis confirm the general feasibility of the chosen

approach. When working with commercial or even scientific software, one usually obtains a bathy-

metric point cloud or backscatter mosaic without having to think too much about what was necessary

to get there. While it is not always necessary to focus on the required background processing steps,

otherwise, it has proven to be very educational for understanding the relationships inherent in MBES.

At the beginning of this work, this was a chance that was rather underestimated. In fact, however,

the combination of Python and Jupyter Notebook provides an ideal platform for students to learn

the basic principles of MBES in explanatory texts while being able to apply and test what they have

learned with interactive widgets and the underlying Python code. It also provides a platform to ex-

plicitly illustrate and demonstrate each step of the MBES processing chain. It should be noted that

despite all this, a clear structure has to be maintained. For example, bathymetry cannot be filtered

before it has been merged.

A possible application in this respect could be the adaptation of a processing workflow for the HCU

research vessel DVocean. For such an educational approach, it would be worth considering not

tying all Python code to widgets. The added value would be on the one hand for the students to gain

experience in programming, on the other hand the workflow would be more flexible and the approach

more widely scalable. Widgets would still make sense, but only for frequently invoked functions. To

further extend the educational approach, one could focus much more on the display capabilities of

Jupyter Notebook and tie it together with the pure documentation.
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6. Conclusion

The aim of the thesis was to explore the interactive processing possibilities of Kongsberg MBES

bathymetry and backscatter data with Jupyter Notebook and Python. The program which was imple-

mented for this purpose is subdivided into three components: Bathymetry preprocessing, backscat-

ter preprocessing, and filters and corrections.

The bathymetry preprocessing is based on the Kongsberg XYZ beam data. Some of the IHO rec-

ommended corrections can therefore not be applied. At the present, sensor corrections have to

be applied externally and then imported via an ASCII interface to the processing notebook. When

comparing with reference data processed in commercial software (Qimera), it has been found that

there is a minimal systematic deviation in the preprocessing. The cause can most likely be limited

to a difference in the individual sensor corrections of Kongsberg and Qimera.

The backscatter preprocessing is based on the Kongsberg seabed image data. The implemented

georeferencing algorithm works in a convincing manner and allows a high spatial resolution of the

beam time series backscatter data. Since no post-processing radiometric corrections were applied,

it is not guaranteed that the backscatter of the implemented software is physically meaningful. How-

ever, it has been shown that the extensive dynamic gain applied by Kongsberg in real-time gives very

satisfactory results. The backscatter mosaics created this way were at least visually very appealing.

If the backscatter data is exploited in a self-contained manner, it can presumably provide the basis

for a seafloor classification. To validates its absolute utility, more comprehensive comparisons would

need to be conducted including data from independent sensors.

The filters and corrections were finally implemented in Jupyter Notebook based on a combination of

the three open source point cloud processing tools PDAL, Entwine and Potree. All three tools are

optimized for processing point clouds and the associated data volumes. In this way, the processing

speed could be improved. The starting point for this is Entwine’s octree-based EPT format. For

the processing itself, IPython widgets are used to interactively parameterize and execute PDAL

pipelines for bathymetry filtering and backscatter corrections, respectively. The bathymetry filtering

can be checked via the web-based Potree viewer. This step is not yet possible for the backscatter

processing, since Potree cannot display amplitudes by default. Both, bathymetry and backscatter

processing, could be extended functionally. The further use of the notebook would lead the way for

the extension.

At present Python is one of the programming languages of choice for programmers coming from

a data science and application background rather than having an excessive education in computer

science. It is easy to implement, provides an almost pseudo-code like readability and it has a

vast community which helps to solve almost any problem. Thereby the integration of performance

oriented C++ libraries essentially helped to handle the large data amounts during the filters and

corrections. The approach of using Jupyter Notebook as a graphical user interface is promising,

but some aspects need to be considered. Jupyter Notebook offers an interesting way to combine

data processing in the form of code in the background directly with documentation. In this context,

the use of widgets offers the possibility to create specific interfaces between the two, facilitating

processing. It was found that excessive use of widgets can make a notebook quite cluttered and

carries a high risk of undesirable behavior. When using Jupyter Notebook exclusively as a GUI,
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well-defined workflows are required that are parameterized with the widgets provided. For more

complex setups, they have insufficient testing capabilities and can be executed improperly due to

their flexibility.

Regarding the initial question, how well Jupyter Notebook and Python can be utilized for interac-

tive processing of bathymetry and backscatter data: The implemented program is by far not as

comprehensive as the available commercial or scientific software. However, in relation to the time

given within the frame of this thesis, the general feasibility could be demonstrated and the achieved

performance and results are promising.
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Project structure

A. Project structure
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Raw SO268-3 data subsets

B. Raw SO268-3 data subsets
B.1. Bathymetry

Depth

-3345 m

-3598 m

-3852 m

Subset 1

Depth

-4565 m

-5050 m

-5536 m

Subset 2

Depth

-5572 m

-5690 m

-5809 m

Subset 3

Depth

-4895 m

-5265 m

-5635 m

Subset 4

Depth

-5033 m

-5235 m

-5437 m

Subset 5

Depth

-2933 m

-4876 m

-6431 m

Subset 6
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Raw SO268-3 data subsets

B.2. Standard deviation

Std Dev

-45 m

0 m

45 m

Subset 1

Std Dev

-45 m

0 m

45 m

Subset 2

Std Dev

- 45 m

0 m

45 m

Subset 3

Std Dev

-45 m

0 m

45 m

Subset 4

Std Dev

-45 m

0 m

45 m

Subset 5

Std Dev

-45 m

0 m

45 m

Subset 6
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Raw SO268-3 data subsets

B.3. Backscatter

BS strength

-79.9 dB

-3.1 dB

Subset 1

BS strength

-80.0 dB

3.2 dB

Subset 2

BS strength

-57.0 dB

-5.3 dB

Subset 3

BS strength

-58.2 dB

2.6 dB

Subset 4

BS strength

-60.4 dB

1.1 dB

Subset 5

BS strength

-64.1 dB

-1.0 dB

Subset 6
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Processed RV Sonne data subsets

C. Processed RV Sonne data subsets
C.1. Processed bathymetry

Depth

-3847 m

-3600 m

-3353 m

Subset 1

Depth

-5537

-5050 m

-4563 m

Subset 2

Depth

-5776 m

-5692 m

-5605 m

Subset 3

Depth

-5633 m

-5266 m

-4899 m

Subset 4

Depth

-5440 m

-5255 m

-5063 m

Subset 5

Depth

-6435 m

-4683 m

-2931 m

Subset 6
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Processed RV Sonne data subsets

C.2. Difference to Qimera Bathymetry

Difference

-25 m

0 m

25 m

Subset 1

Difference

-25 m

0 m

25 m

Subset 2

Difference

-25 m

0 m

25 m

Subset 3

Difference

-25 m

0 m

25 m

Subset 4

Difference

-25 m

0 m

25 m

Subset 5

Difference

-25 m

0 m

25 m

Subset 6

Sailing direction
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Processed RV Sonne data subsets

C.3. Processed backscatter

BS strength

-65 dB

0 dB

Subset 1

BS strength

-65 dB

0 dB

Subset 2

BS strength

-65 dB

0 dB

Subset 3

BS strength

-65 dB

0 dB

Subset 4

BS strength

-65 dB

0 dB

Subset 5

BS strength

-65 dB

0 dB

Subset 6
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Processed RV Sonne data subsets

C.4. Difference to FM Geocoder backscatter

Difference

-15 dB

0 dB

15 dB

Subset 1

Difference

-15 dB

0 dB

15 dB

Subset 2

Difference

-15 dB

0 dB

15 dB

Subset 3

Difference

-15 dB

0 dB

15 dB

Subset 4

Difference

-15 dB

0 dB

15 dB

Subset 5

Difference

-15 dB

0 dB

15 dB

Subset 6
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Processed RV Heincke data subsets

D. Processed RV Heincke data subsets

D.1. Wreck 1

D.2. Wreck 2
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mit dem DHyG Student Excellence Award 2021 ausgezeichnet. 

Die Verarbeitung hydrographischer Daten – Bathymetrie und Rückstreuung – erfordert eine Reihe von 
Prozessen, um zuverlässige Informationen zu erhalten. Mehrere kommerzielle und wissenschaftliche 
Softwarelösungen sind für diesen Zweck verfügbar, aber die Nutzung ist nicht immer frei zugänglich. 
Dem soll durch den Einsatz von Open-Source-Bibliotheken begegnet werden. Die Kombination von 
Jupyter Notebook und Python hat großes Potenzial für die interaktive Datenverarbeitung.


