

Bestimmung von Wasseroberflächenhöhen aus GNSS-SNR-Daten unter Anwendung der Intervall-Analyse

Jörg Reinking

direktes signal

reflektiertes Signal

- GNSS-Beobachtungen in mariner Umgebung
 - berfläche

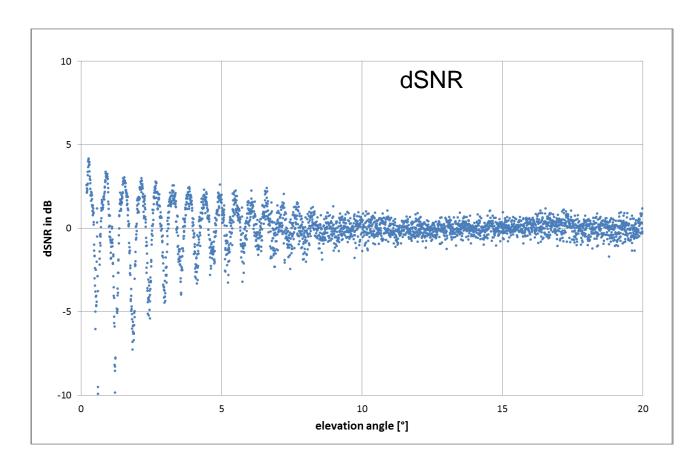
GNSS-Antenne

- GNSS-Signal reflektiert an Wasseroberfläche
 - Interferenz mit direktem Signal
 - beeinflusst Signal-Rausch-Verhältnis (SNR)

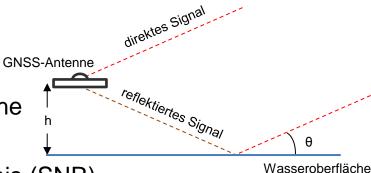
- Wasseroberfläche
- SNR: Funktion der Amplituden A_d und A_r des direkten und reflektierten Signals und dem relativen Phasenwinkel α

$$SNR(A_d, A_r, \alpha, ...)$$

• Beispiel:



GNSS-Beobachtungen in mariner Umgebung



• SNR: Funktion der Amplituden A_d und A_r des direkten und reflektierten Signals und dem relativen Phasenwinkel α

$$SNR(A_d, A_r, \alpha, ...)$$

 Trendreduktion: vereinfachte Form hängt noch vom relativen Phasenwinkel ab

$$dSNR \approx A\cos(\alpha + \phi)$$
 mit Amplitude A und Phasen-Offset ϕ

• Phasenwinkel: Funktion der Wellenlänge des Signals λ , des Elevationswinkels und der Reflektorhöhe h

$$\alpha = \frac{4\pi}{\lambda} h \sin \theta$$

- SNR: nicht-lineare Funktion der Reflektorhöhe
 - In Tidegewässern: Reflektorhöhe variiert mit der Zeit: h(t_i)
 - SNR-Beobachtungen für Satelliten k zum Zeitpunkt t_i wird ausgedrückt durch

$$v_{k,i} + dSNR_{k,i} = A_k cos(\frac{4\pi}{\lambda}h(t_i)sin(\theta_{k,i}) + \phi_k)$$

- A_k, φ_k und Parameter von h(t_i) aus Ausgleichung (least-squares)
 - Linearisierung notwendig
 - Gute Näherungswerte für Parameter von h(t_i) notwendig
 - Problem: Was ist gut?
- Optimierungsproblem:
 - variiere und fixiere Parameter von h(t_i),
 - bestimme A_k, φ_k aus Ausgleichung
 - finde kleineste Summe der Quadrate der Residuen (Zielfunktion)

Beispiel

- 3 Satelliten mit linear steigendem oder fallendem Elevationswinkel
- Lineare Funktion für Reflektorhöhe: h(t_i) = h₀ + h₁t_i
- $h_0 = 5.5 \text{ m}, h_1 = 0.333 \text{ m/h}$

$$\begin{aligned} &A_k=1, & \varphi_k=0, \; \lambda=19 \text{ cm} \\ &t_{_i}=1...3600 \text{ s} \end{aligned}$$

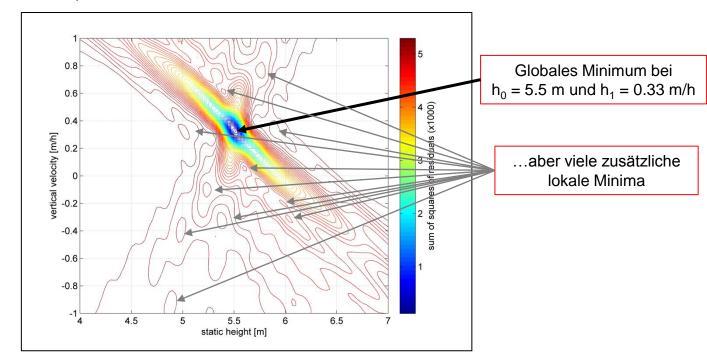
k	$e_{k,1}$	e _{k,3600}
1	35°	5°
2	4°	30°
3	6°	23°

Beispiel

- 3 Satelliten mit linear steigendem oder fallendem Elevationswinkel
- Lineare Funktion für Reflektorhöhe: h(t_i) = h₀ + h₁t_i
- $h_0 = 5.5 \text{ m}, h_1 = 0.333 \text{ m/h}$

$$\begin{aligned} &A_k=1, & \varphi_k=0, \ \lambda=19 \text{ cm} \\ &t_{_i}=1...3600 \text{ s} \end{aligned}$$

k	e _{k,1}	e _{k,3600}
1	35°	5°
2	4°	30°
3	6°	23°



- Beispiel
 - 3 Satelliten mit linear steigendem oder fallendem Elevationswinkel
 - Lineare Funktion für Reflektorhöhe: h(t_i) = h₀ + h₁t_i
 - $h_0 = 5.5 \text{ m}, h_1 = 0.333 \text{ m/h}$
- Linearisierte Ausgleichung
 - könnte nicht konvergieren
 - könnte zu lokalem Minimum konvergieren
- Brute-Force-Methode (probieren aller Möglichkeiten)
 - 60.000 Berechnungen der Zielfunktion bei Auflösung von 1 cm bzw.
 1 cm/h

Globale Optimierung mittels Intervall-Analyse

- Intervall-Analyse
 - Nutzt Eigenschaften einer m-dimensionalen Funktion in einer Intervall-Box der Variablen der Funktion
 - Intervall der Funktionswerte wird mit Intervall-Arithmetik bestimmt
 - Algorithmen basieren meist auf "branch-and-bound"-Strategien
 - → Start: Fülle Liste der Intervalle mit initialer Intervall-Box
 - → Wähle zu untersuchende Intervall-Box
 - → Monotonitätstest: Intervall verwerfen?
 - → Cut-Off Test: Intervall verwerfen?
 - → "bounding": neues Intervall aus Intervall-Newton-Methode
 - → Intervall kleiner: ersetze aktuelles Intervall durch neue Intervalle
 - → Intervall nicht kleiner: Intervall teilen, zur Liste der Intervalle zufügen
 - → Stopp: wenn Liste leer oder letztes Intervall kleiner als eine Grenzwert
 - → Zurück zum zweiten Schritt

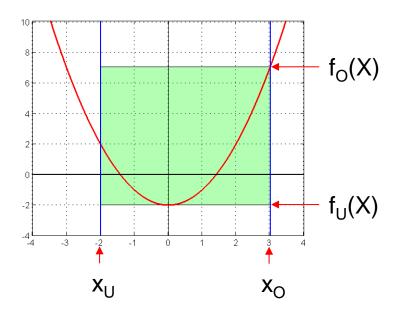
Intervall-Arithmetik

Intervall:
$$X = [x_U, x_O]$$

Untere und obere Endpunkte x_U und x_O

grundlegende Operationen:

$$\begin{aligned} X &= [x_{U}, x_{O}] \quad Y &= [y_{U}, y_{O}] \\ X &\circ Y &= [\min\{x_{U} \circ y_{U}, x_{U} \circ y_{O}, x_{O} \circ y_{U}, x_{O} \circ y_{O}\} \\ &\quad , \max\{x_{U} \circ y_{U}, x_{U} \circ y_{O}, x_{O} \circ y_{U}, x_{O} \circ y_{O}\}] \end{aligned}$$



daraus: Intervall der Funktionswerte

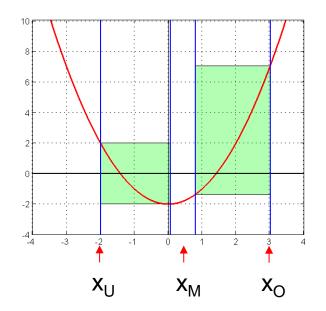
Beispiel:
$$f(x) = x^2 - 2$$

 $X = [-2,3] \longrightarrow f(X) = [-2,7]$

- Intervall-Newton-Methode
 - → Intervall-Version der Newton-Methode
 - → Findet alle Nullstellen einer Funktion in einem Intervall

$$X_{\text{neu}} = X \cap \left(x_{\text{M}} - \frac{f(x_{\text{M}})}{f'(X)}\right)$$

Mittelpunkt des Intervalls min. und max. Gradient



neues X kann ein, zwei oder ein leeres Intervall sein

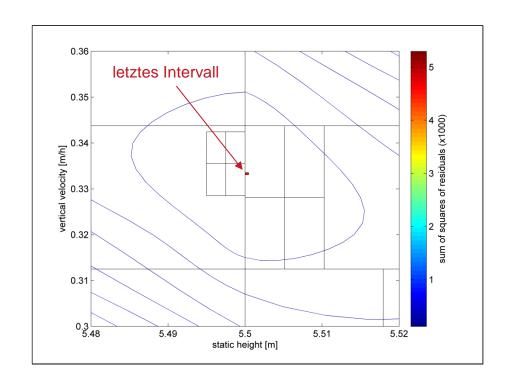
im Intervall

Beispiel:
$$f(x) = x^2 - 2$$
 $f'(X) = [-4, 6]$

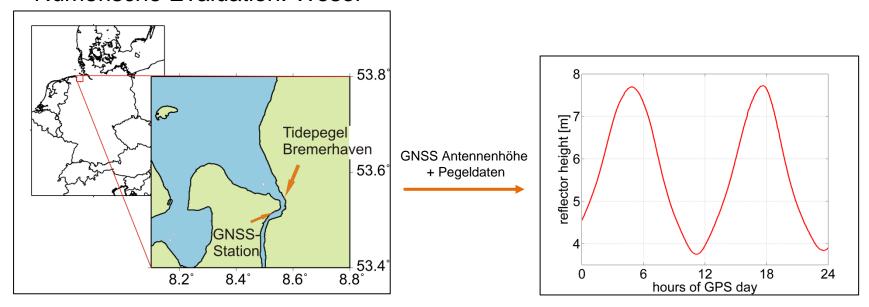
$$x_{M} - \frac{f(x_{M})}{f'(X)} = [-\infty, 0.0625] \cup [0.791\overline{6}, \infty]$$

$$x_{neu} = [-2, 0.0625] \cup [0.791\overline{6}, 3]$$

- Anwenden auf Eingangsbeispiel
 - Auflösung 1 cm bzw. 1 cm/h
 - 194 Intervalle untersucht
 - Letztes Intervall: $h_0 = 5.5 \text{ m}, h_1 = 0.333 \text{ m/h}$
 - Verworfene Intervalle
 - → Cut-Off-Test 89.7 %
 - → Monotonitätstest 6.7 %
 - → leeres Intervall aus Intervall-Newton-Method 3.5 %

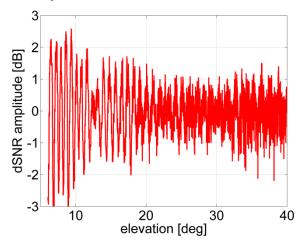


Numerische Evaluation: Weser

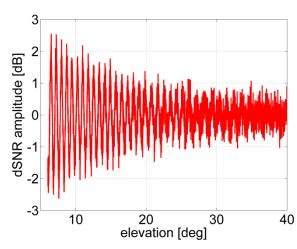


Vermeidung von Artefakten aus Vorverarbeitung: Nutzung von simulierten, aber realitätsnahen Daten

- Numerische Evaluation: Weser
 - Daten entsprechend Antennenumgebung maskiert
 - Dämpfung bei steigendem Elevationswinkel $A(\theta) = A_{max} \cos(\theta) e^{-4\theta}$
 - Max. Amplitude A_{max} = 3 dB
 - Zufälliges Rauschen mit σ = 0.3 dB
 - Vereinfachte Version $dSNR_{k,i} = A(\theta_{k,i}) cos(\frac{4\pi}{\lambda}h(t_i)sin(\theta_{k,i}) + \phi_k) + noise$
 - Beispiel: GPS satellite 1

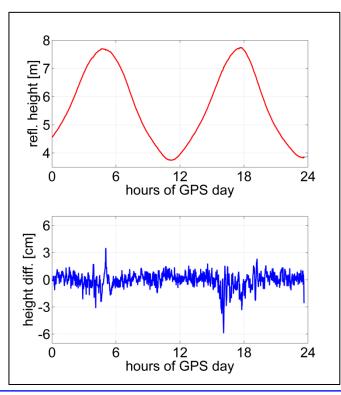


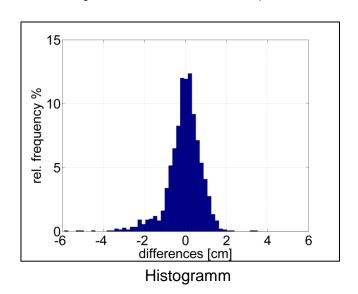
Original-Daten dSNR



Simultierte Daten dSNR

- Numerische Evaluation: Weser
 - Prozessierung: gleitende 20-min-Fenster, verschoben um jeweils 1 min
 - Reflektorhöhe als linear im Zeitfenster angenommen h(t_i) = h₀ + h₁t_i
 - initiale Intervall-Box für alle Fenster: $h_0 = [3.5, 8.0]$ m; $h_1 = [-1.3, +1.3]$ m/h





emp. Standardabweichung 8.5 mm

Fazit

- Globale Optimierung mit Intervall-Analyse ist anwendbar
- Ergebnisse sind vielversprechend, Methode muss und wird mit realen Daten getestet werden
- Physikalisch korrekte H\u00f6henmodelle k\u00f6nnen verwendet werden
- Verbesserte und angepasste Optimierungs-Algorithmen müssen entwickelt werden

Vielen Dank für die Aufmerksamkeit