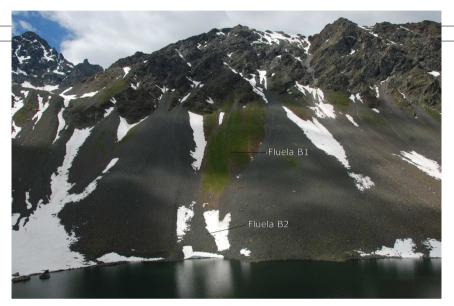


Faculty of Forestry, Geosciences and Hydrosciences Institute of Photogrammetry and Remote Sensing

UAV-basierte Vermessung von Bergseen

Christian Mulsow

Lindau, 13.06.2018

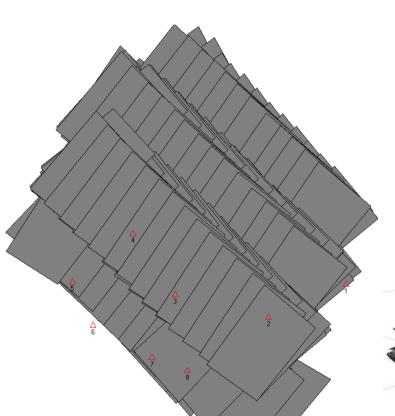

Inhalt

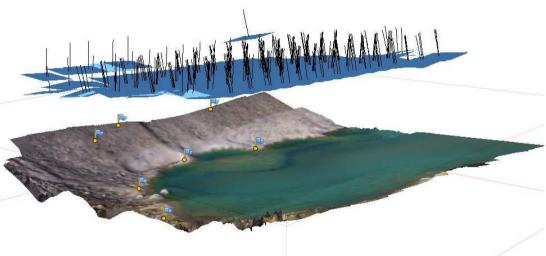
- 1. Motivation
- 2. UAV-Bildblock
- 3. Bildorientierung- Mehrmedienbündel
- 4. Unterwasser-DTM-Generierung
- 5. Ergebnisse



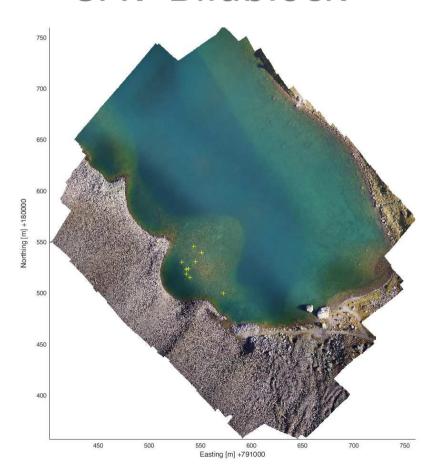
- Objekt: Schottensee (Flüelapass), Schweizer Alpen
- Ältestes Permafrost-Studienobjekt der Schweiz
- Ziel: Rekonstruktion der geomorphologischen Prozesse

Bedarf an DTM des Seebodens!



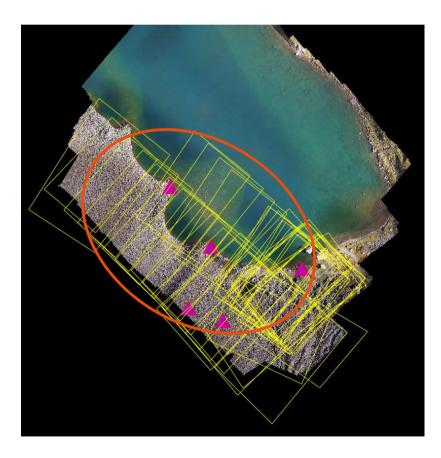

- UAV Ascending Technologies (AscTec) Falcon 8 octocopter
- Sony NEX-7 Kamera (24 Mp, 20mm, F/2.8)
- 300 Bilder
- 100m Flughöhe
- GSD 2cm
- Überlappung 75% längs, 65% quer
- Näherungs-Orientierungen von UAV's GNSS/IMU

UAV Bildblock

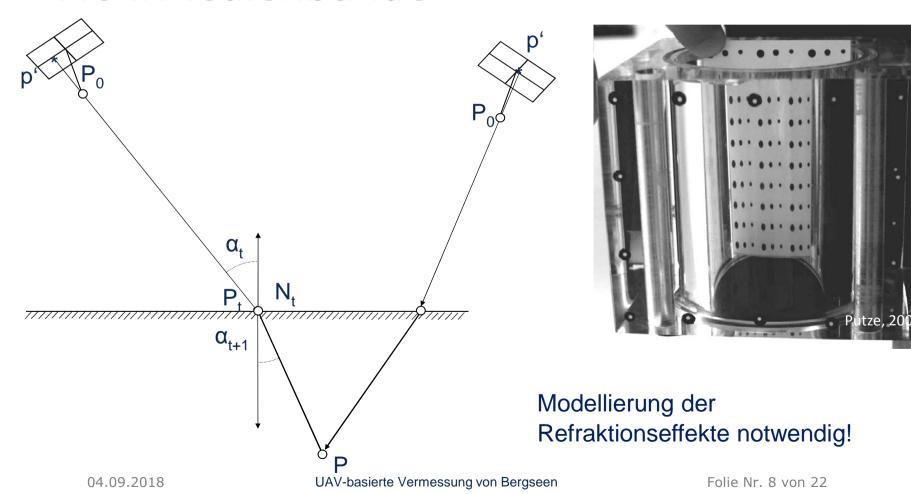


- 8 Passpunkte (Genauigkeit 5/5/10 cm in X/Y/Z)
- Keine Unterwasserpasspunkte!

UAV Bildblock



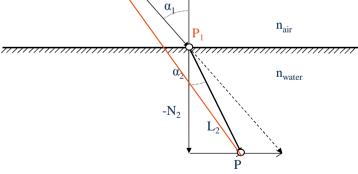
- 15 Kontrollpunkte (unvermarkt) am Seeboden (Genauigkeit 10/10/10 cm in X/Y/Z)
- Neigungsmessungen


Bildorientierung – Datenaufbereitung

- Reduktion des Blockumfangs auf relevante Gebiete
- Aussortieren schlechter Bilder (unscharf, überbelichtet etc.)
- 6 Bilder mit >70%
 Wasserüberdeckung
 - → Komplette Orientierung mit konv. (Ein-Medien-) Bündel nicht möglich!

Mehrmedienbündel

Mehrmedienbündel


Erweitertes Kollinearitätsgleichungssystem:

$$x' = x'_0 + z' \frac{r_{11}(X_{P_1} - X_{V_0}) + r_{21}(Y_{P_1} - X_{0})_0 + *_{31}(Z_{P_1} X_{0})X_0}{r_{13}(X_{P_1} - X_{V_0}) + r_{23}(Y_{P_1} - X_{0})_0 + *_{33}(Z_{P_1} X_{0})X_0} \Delta \kappa' \Delta \chi'$$

$$y' = y'_0 + z' \frac{r_{12}(X_{P1} - X'_0) + r_{22}(Y_{P1} - X_0)}{r_{13}(X_{P1} - X'_0) + r_{22}(Y_{P1} - X_0)} + r_{33}(Z_{P1} - X_0) + r$$

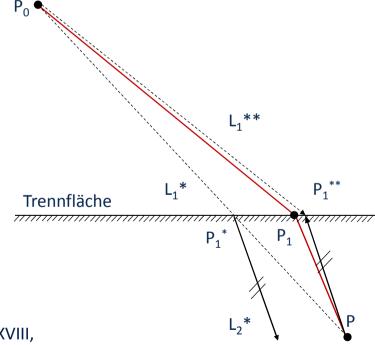
Koordinaten des Durchstoßpunktes P₁ über Rückwärts-Raytracing:

$$(P_1) = f_{BRT}(P_0, P, N_{water}, D_{water}, nai_r, nwa_{ter})$$

Alle Parameter können als Unbekannte behandelt werden!

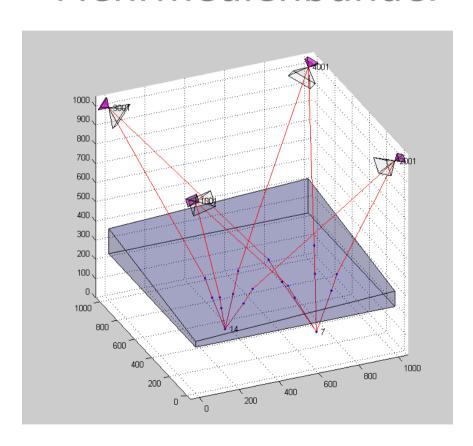
Mehrmedienbündel

Backward Ray Tracing (BRT):


Beispiel: Alternating forward ray tracing (AFRT)

- Startvekor L₁ (Verbindung P₀ P)
- Berechnung des gebrochen Bildstrahls L₂
- Verschiebung von L₂ in P, Berechnung Schnittpunkt P₁
- Vektor von P₀ to P₁ usw.

Abbruchkriterium: Betrag Änderung von P₁ unter Grenzwert


Diverse Methoden implementiert für alle möglichen Trennflächenkombinationen und Abbildungspfade

Mulsow, C., 2010. A flexible multi-media bundle approach.
International Archives of Photogrammetry,
Remote Sensing and Spatial Information Sciences, Vol. XXXVIII,
Part 5 Commission V Symposium, Newcastle upon Tyne, UK

Hoher Berechnungsaufwand!

Numerische Differentiation notwendig!

- Nichtlineares Raytracing innerhalb nichtlinearem Kollinearitätsgleichungssystem
- Für jede numerische Differentiation 2x Raytracing notwendig!

Strategie: Orientierung zuerst (Verknüpfungspunkte), DTM Generierung mit orientiertem Block!

Variierende Abbildungsqualität von Land- und Unterwasserbereichen!

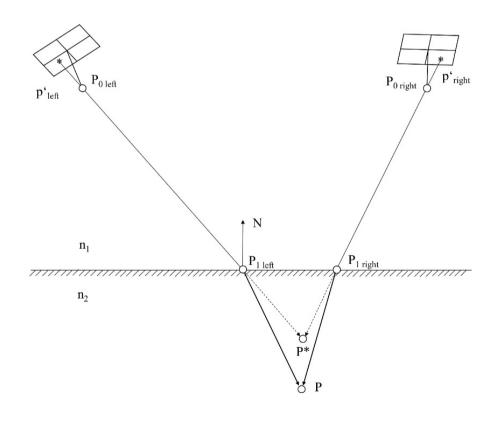
- Bildmessung in LPS (Erdas)
- "semi-automatisches" Kennzeichnen von Unterwasserpunkten
- Schwieriges Messobjekt –
 Abbildungsqualität ~

Eingangsdaten für Bündel:

- 8000 Bildmessungen
- ~900 Verknüpfungspunkte
- 150 Unterwasserpunkte

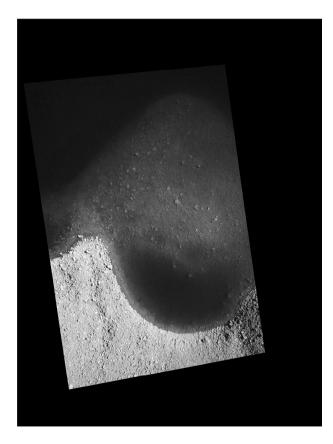
Bildorientierung

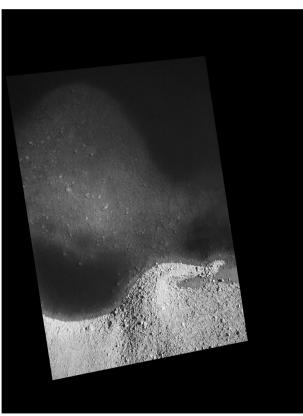
- I. Alle Bildpunkte als Landpunkte (keine Mehrmedienmodellierung)
- II. Nur Landpunkte, Kameraparameter frei, nur Bilder mit mind. 70% Landüberdeckung
- III. Kameraparameter fest (von II),
 Bildorientierungen von Land-Bildern aus II
 fest, Orientierungen der Restbilder frei (>30%
 Wasserüberdeckung), UnterwasserBildpunkte zusammen mit Landpunkten,
 Wasserebene fest (N Lotrichtung D aus GPS,
 Brechungsindex Wasser)
- IV. Maximaller Freiheitsgrad, Wasserebene fest


Keine Bestimmung der Wasseroberfläche möglich!

Unzureichend Aufnahmegeometrie – nur Senkrechtaufnahmen!

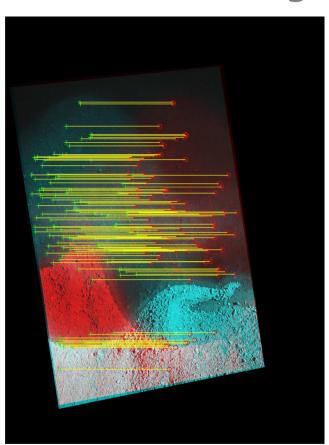
Quality Parameter	Parameter Setting No.			
	1	Ш	Ш	IV
s ₀ [px]	0.48	0.47	0.49	0.49
RMS x' y' land [px]	0.43/0.44	0.42/0.43	0.42/0.43	0.43/0.44
RMS x' y' water[px]	0.44/0.43	-	0.51/0.51	0.46/0.46
c _k [mm]	20.443	20.467	20.467	20.441
x _H [mm]	-0.0027	-0.0018	-0.0018	-0.0030
y _H [mm]	0.0584	0.0552	0.0552	0.0587
RMS X /Y/Z land [cm]	1.7/1.4/4.4	1.5/1.2/3.8	1.5/1.2/3.8	1.7/1.4/4.4
RMS X/Y/Z water [cm]	1.0/1.7/4.4	-	0.9/1.6/5.3	1.0/1.8/6.0
	Underwater check-points			
RMS Z (Bundle) [cm]	2.9		3.5	4.0
RMS [cm] Z _{target} -Z _{actual}	65.8	-	11.8	14.5


DTM Generierung

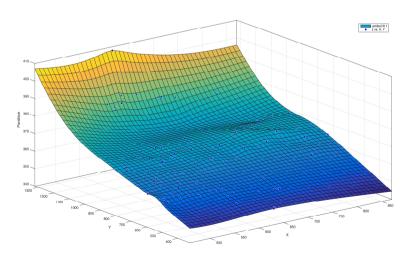


Extraktion auf Basis von Stereonormalbildpaaren

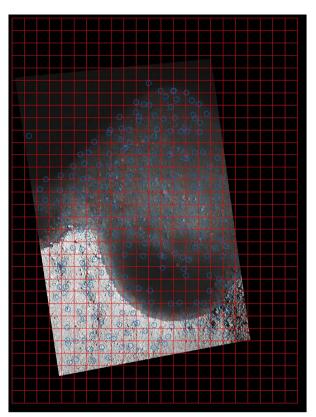
- Finden von Bildpunktpaaren
- Matching (LSM)
- Normaler Vorwärtsschnitt
- Identifikation von Unterwasserpunkten Anhand Höhe
- Mehrmedien-Vorwärtsschnitt für Unterwasserpunkte
- Fusionierung der Einzelpunktwolken
- Filterung
- TIN Berechnung

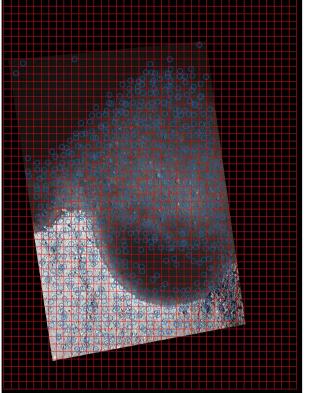

Stereonormalbildpaar

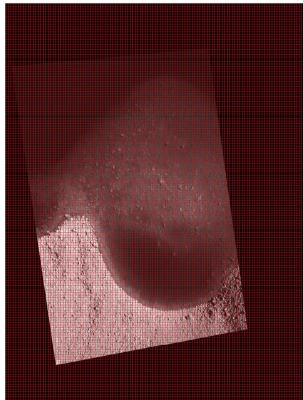
Achtung!


Nicht frei von y-Parallaxen wegen Refraktion!

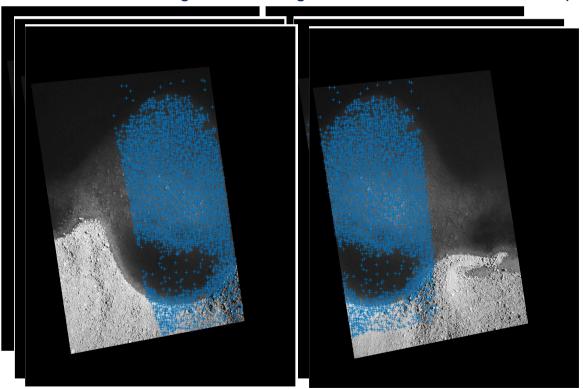
Nur für Näherungswertberechnung!

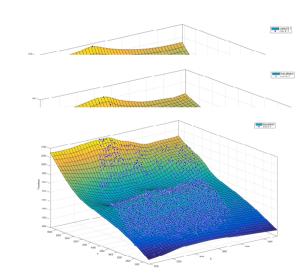



- Pyramidenansatz
- 1. Stufe: Reduktion Auflösung (Faktor 5)
- Descriptor-Matching (Harris-Merkmale)
- Disparitäts-Karte für nächst höhere Auflösung



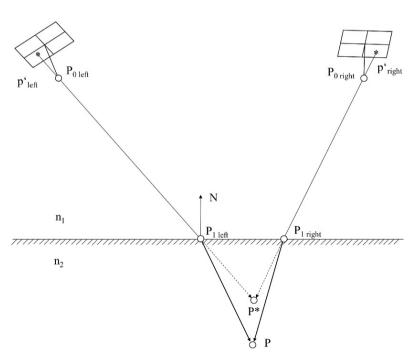
- Rasterweise Identifikation des besten Merkmalspunktes (Harris)




04.09.2018

UAV-basierte Vermessung von Bergseen

- LSM für jede Stufe (nur x-Verschiebung und Maßstab) → Disparitätskarte für nächst höhere Auflösung als Näherungswert für Punktsuche im Stereopartner



Final Messung im Originalbild mit vollem LSM Parametersatz!

DTM Generierung - Vorwärtsschnitt

Raytracing für Mehrmedien-Vorwärtsschnitt

Algorithmus von Glassner (1989):

- Durchstoßpunkt durch Trennfläche über Geraden/Ebenen-Schnitt
- Richtung des gebrochenen Bildstrahls:

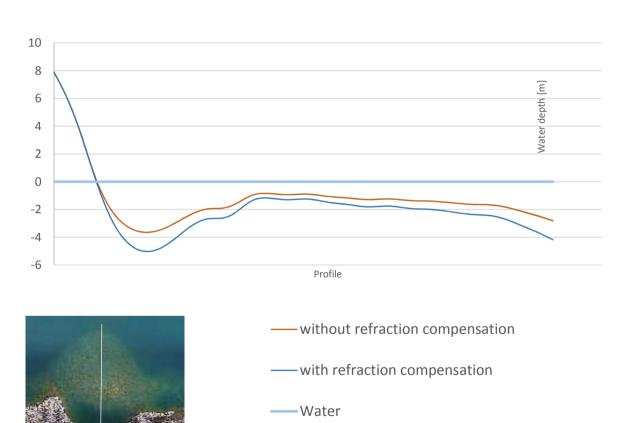
$$L_2 = \frac{L_1}{n} + \left(\frac{C}{n} - \sqrt{1 + \frac{1}{n^2}(C^2 - 1)}\right)N$$

$$C = -N \cdot L_1 \qquad , \qquad n = \frac{n_2}{n_1}$$

Uferlinie aus

Schnitt DTM / Wasseroberfläche

Bildorientierung



Mit Mehrmedienberücksichtigung

Ohne Mehrmedienberücksichtigung

Vergleich DTM

Fazit

- Modellierung der Refraktion ist notwendig und handhabbar
- DTM-Qualität abhängig von Abbildungsqualität
- Messung bis ~4m Tiefe
- Anwendbar bei ruhiger Wasseroberfläche

Todo

- Automatische Uferlinienmessung, zusätzlicher Input für Bündel
- Aufnahme eines "perfekten" Datensatzes mit Unterwasserpasspunkten

Faculty of Forestry, Geosciences and Hydrosciences Institute of Photogrammetry and Remote Sensing

Fragen?

Christian Mulsow christian.mulsow@tu-dresden.de

Lindau, 13.06.2018

