
48 Hydrographische Nachrichten

DHyG Student Excellence Award I

of the fundamental interrelationships. With this in 
mind, the idea was formed to investigate the pos-
sibilities of processing MBES data in order to devel-
op an interactive tool based on Jupyter Notebook 
and Python. The exemplary data was acquired us-
ing a Kongsberg EM 122 MBES aboard the research 
vessel Sonne on a transit cruise (SO268-3) from 
Vancouver to Singapore, which is also available on 
PANGEA (Kinne et al., 2019).

Why Python and Jupyter Notebook?
As a dynamically typed, interpreted programming 
language, Python requires relatively little code to 
express a high level of functionality. Therefore, the 
code is usually easy to read and quick to debug 
and review. When it comes to executing code, 
programming languages that are compiled in 
advance tend to be faster. However, especially for 

Introduction
Today, multibeam echo sounders (MBES) are the 
most common and e!cient method of conduct-
ing hydrographic surveys for the collection of ba-
thymetry and backscatter data. Due to the chal-
lenging conditions in the marine environment and 
the complex MBES system setup, both types of 
data require various processing steps to provide 
reliable results. Conventionally, proprietary soft-
ware suites with purchasable licenses are used for 
this purpose. While these leave little to be desired 
in terms of functionality and reliability, it is often 
semi-transparent what processing is applied to the 
data. In various areas of geomatics, there is a move-
ment towards openness: keyword open source. 
Particularly in the university environment, open 
source and the use in teaching can be combined 
well in order to give students an understanding 

An article by SOPHIE ANDREE

This work explores the potential of Jupyter Notebook and Python to create an interac-
tive processing tool for multibeam bathymetry and backscatter data. For this purpose, 
a Kongsberg EM 122 data set was used to identify and implement the required process-
ing steps. Special attention was paid to the integration of freely available open source 
libraries to meet the performance requirements. The result is a modular approach that 
!rst decodes the required raw data, then computes the bathymetry and backscatter 
point clouds and !nally applies semi-automatic !lters to clean the bathymetry from 
outliers and visually correct the backscatter. Validation with data already processed 
on board con!rmed the general feasibility of the approach. However, minor incon-
sistencies were encountered in the preprocessing of the bathymetry, which should be 
addressed in further work. Additionally, the tool can be extended for tidal correction 
and navigation processing.

Interactive processing of MBES 
bathymetry and backscatter data 
using Jupyter Notebook and Python

Author
Sophie Andree holds a M.Sc.
degree in Geodesy with
specialisation in Hydrography
from HafenCity University in
Hamburg.

sophie-andree@web.de

DOI: 10.23784/HN119-07

Python | Jupyter Notebook | multibeam processing | bathymetry | backscatter | open source
Python | Jupyter Notebook | Verarbeitung von Fächerlotdaten | Bathymetrie | Backscatter | Open Source

Diese Arbeit untersucht das Potenzial von Jupyter Notebook und Python zur Erstellung eines interakti-
ven Tools zur Verarbeitung von Fächerlot-Bathymetrie- und -Rückstreudaten. Zu diesem Zweck wurde 
ein Kongsberg-EM-122-Datensatz verwendet, um die erforderlichen Verarbeitungsschritte zu identi"-
zieren und zu implementieren. Besonderes Augenmerk wurde auf die Integration von frei verfügbaren 
Open-Source-Bibliotheken gelegt, um den Leistungsanforderungen gerecht zu werden. Das Ergebnis 
ist ein modularer Ansatz, der zunächst die benötigten Rohdaten decodiert, dann die Bathymetrie- 
und Rückstreupunktwolken berechnet und schließlich halbautomatische Filter anwendet, um die 
Bathymetrie von Ausreißern zu bereinigen und die Rückstreuung visuell zu korrigieren. Die Validierung 
mit bereits an Bord verarbeiteten Daten bestätigte die generelle Machbarkeit des Ansatzes. Allerdings 
traten kleinere Unstimmigkeiten bei der Vorverarbeitung der Bathymetrie auf, die in weiteren Arbeiten 
behoben werden sollten. Zusätzlich kann das Tool für die Gezeitenkorrektur und die Navigationsver-
arbeitung erweitert werden.



HN 119 — 06/2021 49

DHyG Student Excellence Award I

non-professional programmers, the readability 
and e!ciency of code implementation in Python 
is often comparatively more productive than faster 
code execution. This is perhaps one of the reasons 
why Python has become particularly popular in 
the data science community (Carbonnelle 2020). 
This leads to another aspect that should be con-
sidered: The open source community for Python 
is large. Libraries and packages already exist for 
many di#erent applications to solve a wide variety 
of tasks. In addition, Python can be used to extend 
and embed other languages such as C or C++. 
In this context, it can be understood as a »glue« 
language. Performance-critical parts of a program 
can be written in or adapted from faster languag-
es, while Python is used for code control and ad-
aptation (van Rossum and Drake 2003).

Jupyter Notebook is a free, open source, inter-
active web tool that is structured like a notebook. 
Software code, computational results, explanatory 
text and multimedia resources can be combined 
into a single document. Originally, the Jupyter 
project grew out of the IPython (interactive Py-
thon) project, with the goal of supporting interac-
tive data science and scienti"c computing (Perkel 
2018). In teaching, Jupyter Notebooks are particu-
larly well suited for interactive software guides. 
IPython widgets (GUI controls) can be used to ex-
ecute code speci"cally on user input without hav-
ing to modify the actual code. In this way, a graphi-
cal user interface can be created with little e#ort.

Input data
Kongsberg provides MBES data in the binary de-
coded ALL format. The individual sensor measure-
ments (echo sounder, position system, motion 
sensor, etc.) are streamed to the output "le as se-
quential datagrams. There are two di#erent data-
gram types for both, bathymetry and backscatter 
data. For bathymetry, the choice is between the 
XYZ datagram and the raw range and angle da-
tagram. The former includes the local Cartesian 
coordinates per beam computed in real time. Ship 
motion, sound velocity at the transducer face, and 
ray bending through the water column have al-
ready been corrected (Kongsberg 2018). The XYZ 
datagram was chosen for the "rst implementa-
tion, even though it disables corrections to the 
individual sensor data. The raw range and angle 
datagram could be integrated in a later stage.

For the backscatter, the choice was between 
the single value per beam re$ectivity provided as 
part of the XYZ datagram or the beam time series 
written to the seabed image datagram. The single 
values are typically determined as some sort of 
average of the beam time series. This has the ef-
fect of discarding much of the original resolution. 
However, while the individual values are already 
georeferenced via the associated beam bathym-
etry, the individual beam time series samples must 

be georeferenced via the swath bathymetry in an 
additional processing step. Since the resolution of 
the backscatter data is very important, the seabed 
image datagram is used.

For georeferencing, the position datagram is 
needed as well (Fig. 1). The three identi"ed data-
grams can be decoded using the PyALL module 
written and published on GitHub by Kennedy 
(2016). Afterwards, the bathymetry is transformed 
from local Cartesian ship coordinates to global 
geographic coordinates using the navigation in-
formation. Then, the beam time series backscatter 
data are georeferenced by interpolating between 
the bathymetry soundings. Subsequently, the 
bathymetry and backscatter data are available 
as point clouds in a global coordinate reference 
frame. As a next step, a semi-automatic "ltering of 
the bathymetry point cloud and visual image cor-
rections for the backscatter data follow.

Concept development
During concept development, a database ap-
proach was initially considered. As already dis-
cussed, the raw data are provided in di#erent da-
tagram types that have to be handled individually. 
However, the datagram timestamps are not always 
sequential because individual sensors sometimes 
output their measurements with a delay. For these 
types of tasks, a database-based approach o#ers 
an optimal solution. The basic idea is to store the 
data itself, the di#erent processing stages, but also 
metadata and survey information across "les in a 
project database. In this way, for example, a ba-
thymetry sounding can be traced back through 
the processing to the original datagrams (XYZ and 
position). Likewise, it would be possible to query 
which soundings were measured in equidistant 
mode or to "nd all soundings between speci"c 
coordinates or dates.

However, during the database setup, it became 
clear that a complex database management was 
critical for both data integrity and processing 
performance. This phase proved to be extremely 
time consuming and there were only few exist-

Fig. 1: Required processing steps



50 Hydrographische Nachrichten

DHyG Student Excellence Award I

and bathymetry and backscatter point cloud "lter-
ing (PDAL, Entwine and Potree) on the other. To 
connect the two components, the raw data needs 
to be processed into point clouds by georeferenc-
ing. For this purpose, a separate Python module 
was written. The "rst step is to interpolate the ship 
positions to the ping timestamps. The heading is 
then used to transform the Cartesian coordinates 
of the individual soundings into the superior geo-
graphic coordinate system. For georeferencing 
the backscatter time series, the samples belong-
ing to the bottom detection are identi"ed. Since 
the georeferencing of the bottom detections is 
given by the bathymetry, the other samples can 
be georeferenced by rearranging the beam time 
series between the bottom detections and inter-
polating between the bottom detection samples.

As previously mentioned, no corrections are 
applied to the individual sensor data, which can 
signi"cantly degrade the data quality. To address 
this problem, the processing was divided into two 
phases: First, a preprocessing Python module from 
raw Kongsberg data to point clouds. If any correc-
tions would need to be applied, this step may be 
conducted within another software. The raw point 
clouds can then be imported as ASCII "les and 
processed in a Jupyter Notebook in which they 
are further "ltered to outlier-cleaned bathymetry 
and visually corrected backscatter. Thereby the 
"lters can be con"gured via GUI controls. For the 
bathymetry outlier cleaning, a combination of a 
depth window "lter, an extended local minimum 
(ELM) "lter, a radius (Fig. 3) and a statistical outlier 
"lter can be used. For the backscatter corrections, 
a constant o#set or multiplier can be applied, a 
median absolute deviation (MAD) "lter used for 
despeckling and Poisson sampling for anti-aliasing.

Results
To act in the spirit of open source, the tool has 
been released on the code hosting platform 
GitHub under the MIT license (Andree 2021). There 
is also a documentation/manual in the repository 
that provides a good overview if there is interest in 
the code itself and how to use it. For now, only the 
results of the bathymetry and backscatter process-
ing are considered here. For evaluation, the grids 
created during the cruise from manually cleaned 
soundings and backscatter mosaics are taken.

The result of the bathymetry processing (Fig. 4) 

ing libraries that could have been e#ectively inte-
grated. As a result, the approach failed in terms of 
performance. Firstly, performance in terms of the 
implementation itself, but also because the data 
volumes could not be handled without perfor-
mance orientation.

The important lesson learned from the "rst ap-
proach was to move from an isolated monolithic 
approach based on a project database to a modu-
lar approach with less tightly coupled code. The 
individual modules must be specialised for pro-
cessing large volumes of spatial data. In best case, 
the modules should come from established, open 
source libraries and may also come from perfor-
mance-optimised programming languages such 
as C or C++ due to Python’s ability to embed other 
languages.

With regard to the above criteria, a combination 
consisting of PDAL, Entwine and Potree was tak-
en. PDAL (Point Data Abstraction Library) is a C++ 
based library for processing point clouds (PDAL 
Contributors 2020). The basic concept behind 
PDAL is the compilation of individual processing 
steps into pipelines. For example, spatial outlier "l-
ters can be assembled for bathymetry cleaning or 
attribute-based "lters for backscatter correction. 
Entwine is a point cloud organisation software that 
uses an octree-based storage format (Hobu 2019). 
An octree is a tree data structure used for spatial 
indexing (Fig. 2). Individual points are indexed by 
incrementally dividing cuboids into eight child 
cuboids. Using a spatial index can speed up the 
processing of point clouds. The Ent wine format 
can be read into PDAL pipelines and visualised in 
Potree. The latter is an interactive, WebGL-based 
point cloud renderer for large point clouds (Schütz 
2020). It can be embedded in Jupyter Notebook, 
as it is also web-based and uses Entwine’s Octree 
structure for e!cient visualisation.

The compiled open source libraries are used to 
provide decoding of the identi"ed datagrams from 
the raw Kongsberg data (PyALL) on the one hand, 

Fig. 2: Octree structure of example data created in Potree

Fig. 3: GUI controls for the radius outlier "lter



HN 119 — 06/2021 51

DHyG Student Excellence Award I

looks consistent. Most of the outliers could be "l-
tered well except for areas where they accumulate. 
When compared to the on-board processed ba-
thymetry (Fig. 5 and Fig. 6), two patterns were not-
ed: There are clearly recognisable o#sets around 

bathymetric features and in the areas of the outer 
beams.

The pattern is seen in all analysed data subsets 
and appears to be related to the travel direction of 
the ship. At this point, it is not clear at which step 

Fig. 4: Processed bathymetry

Fig. 6: Left: Section of processed subset 2 backscatter. Right: Reference backscatter

Fig. 5: Left: Section of processed subset 2 bathymetry. Right: Di#erence to reference bathymetry



52 Hydrographische Nachrichten

DHyG Student Excellence Award I

proach especially in terms of long-term maintain-
ability and adaptability. The entire tool is purely 
open source and can therefore be used by anyone. 
By integrating C++ libraries, the performance re-
quirements could be met. 

The disadvantages of this approach are that in-
teractivity comes at a high price in terms of com-
plexity. GUI programming must be well thought 
out to avoid becoming clumsy. Also, Jupyter Note-
book is not designed for pure GUI programming, 
as the code execution is very $exible. It is practical 
and fast for small programs but cannot be scaled 
up arbitrarily. Potentially, the dependence on exist-
ing libraries can also be disadvantageous since the 
functionality is so externally determined.

Overall, the use in teaching is advantageous in 
that the students work much closer to the raw 
data and have a closer contact to programming. 
In this context, it may also be useful to reduce the 
GUI programming. The tool that was developed 
in the course of this work can be understood as 
a rough framework, which can be optimised in 
the following. Important successive steps would 
be the identi"cation and elimination of the posi-
tion o#set in the bathymetry. In addition, further 
"lters for both bathymetry and backscatter can be 
added very easily. More profound improvements 
could be the integration of tide correction possi-
bilities and navigation processing. //

this deviation occurs. Presumably, it is due to a dif-
ference in preprocessing. Based on the correlation 
with the direction of travel, the cause can prob-
ably be narrowed down to a time or pitch o#set. 
A possible pitch o#set could be caused by a di#er-
ence in the handling of the dual-swath mode. A 
time o#set could result from a discrepancy in the 
de"nition of the exact measurement time or the 
position interpolation itself.

The georeferencing of the beam time series looks 
plausible and correctly represents bathymetric 
features. Since only visual and no comprehen-
sive radiometric corrections were applied, strictly 
speaking the two data sets cannot be compared. 
Nevertheless, the visual corrections served their 
purpose (Fig.  6). In addition, the Kongsberg real-
time corrections were found to give very pleasing 
results. Compared to the reference grid, it can be 
seen that the overall backscatter range is slightly 
di#erent and that the result is more noisy and 
speckled with some remaining artefacts around 
the centre beam area. 

Conclusion and outlook
The idea of this work was to develop a tool for 
processing bathymetry and backscatter data from 
Kongsberg EM series MBESs. This could be realised 
using freely available open source libraries. The 
advantages of the concept are the modular ap-

References
Andree, Sophie (2021): Interactive MBES processing. https://

github.com/SophieHCU/Interactive-MBES-processing
Carbonnelle, Pierre (2020): PYPL. PopularitY of Programming 

Language index. https://pypl.github.io/PYPL.html
Hobu, Inc. (2019): Entwine. Version 2.1. https://github.com/

connormanning/entwine
Kennedy, Paul (2016): PyALL. Version 1.50. https://github.com/

pktrigg/pyall
Kinne, Stefan; Annika Jahnke et al. (2019): MICRO-FATE – 

Characterization of the fate and e#ects of microplastic 
particles between hotspots and remote regions in the 
Paci"c Ocean, MORE-2 – Measuring Ocean REferences (of 
aerosol, clouds and trace-gases for evaluations of satellite 
retrievals and model simulations) – part 2. SONNE-Berichte, 

Cruise SO268-3, 30.05.2019–05.07.2019, Vancouver–
Singapore

Kongsberg (2018): EM Series. Multibeam echo sounders. 
Datagram formats

PDAL Contributors (2020): PDAL. Point Data Abstraction 
Library. Version 2.2.0. https://github.com/PDAL/PDAL

Perkel, Je#rey M. (2018): Why Jupyter is data scientists’ 
computational notebook of choice. Nature, DOI: 10.1038/
d41586-018-07196-1

Schütz, Markus (2020): Potree. Version 1.7. https://github.com/
potree/potree

van Rossum, Guido; Fred L. Drake (2003): An introduction to 
Python. Release 2.2.2. Network Theory Ltd.


